Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 101
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 6213, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39043652

RESUMO

Obesity is associated with increased cancer risk, yet the underlying mechanisms remain elusive. Obesity-associated cancers involve disruptions in metabolic and cellular pathways, which can lead to genomic instability. Repetitive DNA sequences capable of adopting alternative DNA structures (e.g., H-DNA) stimulate mutations and are enriched at mutation hotspots in human cancer genomes. However, it is not known if obesity impacts DNA repeat-mediated endogenous mutation hotspots. We address this gap by measuring mutation frequencies in obese and normal-weight transgenic reporter mice carrying either a control human B-DNA- or an H-DNA-forming sequence (from a translocation hotspot in c-MYC in Burkitt lymphoma). Here, we discover that H-DNA-induced DNA damage and mutations are elevated in a tissue-specific manner, and DNA repair efficiency is reduced in obese mice compared to those on the control diet. These findings elucidate the impact of obesity on cancer-associated endogenous mutation hotspots, providing mechanistic insight into the link between obesity and cancer.


Assuntos
Dano ao DNA , Reparo do DNA , Instabilidade Genômica , Camundongos Transgênicos , Mutação , Obesidade , Animais , Obesidade/genética , Humanos , Camundongos , Reparo do DNA/genética , Dano ao DNA/genética , Sequências Repetitivas de Ácido Nucleico/genética , Masculino , Camundongos Endogâmicos C57BL , Feminino , Linfoma de Burkitt/genética , DNA/genética , DNA/metabolismo
2.
Brief Bioinform ; 25(2)2024 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-38521050

RESUMO

Sequence-level data offers insights into biological processes through the interaction of two or more genomic features from the same or different molecular data types. Within motifs, this interaction is often explored via the co-occurrence of feature genomic tracks using fixed-segments or analytical tests that respectively require window size determination and risk of false positives from over-simplified models. Moreover, methods for robustly examining the co-localization of genomic features, and thereby understanding their spatial interaction, have been elusive. We present a new analytical method for examining feature interaction by introducing the notion of reciprocal co-occurrence, define statistics to estimate it and hypotheses to test for it. Our approach leverages conditional motif co-occurrence events between features to infer their co-localization. Using reverse conditional probabilities and introducing a novel simulation approach that retains motif properties (e.g. length, guanine-content), our method further accounts for potential confounders in testing. As a proof-of-concept, motif co-localization (MoCoLo) confirmed the co-occurrence of histone markers in a breast cancer cell line. As a novel analysis, MoCoLo identified significant co-localization of oxidative DNA damage within non-B DNA-forming regions that significantly differed between non-B DNA structures. Altogether, these findings demonstrate the potential utility of MoCoLo for testing spatial interactions between genomic features via their co-localization.


Assuntos
DNA , Genômica , Simulação por Computador
3.
Methods Mol Biol ; 2651: 227-240, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36892771

RESUMO

Alternative DNA structures that differ from the canonical B-DNA double helix, including Z-DNA, have received much attention recently due to their impact on DNA metabolic processes, including replication, transcription, and genome maintenance. Non-B-DNA-forming sequences can also stimulate genetic instability associated with disease development and evolution. Z-DNA can stimulate different types of genetic instability events in different species, and several different assays have been established to detect Z-DNA-induced DNA strand breaks and mutagenesis in prokaryotic and eukaryotic systems. In this chapter, we will introduce some of these methods including Z-DNA-induced mutation screening and detection of Z-DNA-induced strand breaks in mammalian cells, yeast, and mammalian cell extracts. Results from these assays should provide better insight into the mechanisms of Z-DNA-related genetic instability in different eukaryotic model systems.


Assuntos
DNA Forma Z , Animais , Reparo do DNA , DNA/genética , DNA/química , Dano ao DNA , Mutagênese , Instabilidade Genômica , Mamíferos/genética
4.
Nat Rev Genet ; 24(4): 211-234, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36316397

RESUMO

Repetitive elements in the human genome, once considered 'junk DNA', are now known to adopt more than a dozen alternative (that is, non-B) DNA structures, such as self-annealed hairpins, left-handed Z-DNA, three-stranded triplexes (H-DNA) or four-stranded guanine quadruplex structures (G4 DNA). These dynamic conformations can act as functional genomic elements involved in DNA replication and transcription, chromatin organization and genome stability. In addition, recent studies have revealed a role for these alternative structures in triggering error-generating DNA repair processes, thereby actively enabling genome plasticity. As a driving force for genetic variation, non-B DNA structures thus contribute to both disease aetiology and evolution.


Assuntos
DNA , Quadruplex G , Humanos , DNA/genética , DNA/química , Replicação do DNA , Genoma Humano , Biologia
5.
Nat Cell Biol ; 24(7): 1141-1153, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35787683

RESUMO

Mutagenic purine-pyrimidine repeats can adopt the left-handed Z-DNA conformation. DNA breaks at potential Z-DNA sites can lead to somatic mutations in cancer or to germline mutations that are transmitted to the next generation. It is not known whether any mechanism exists in the germ line to control Z-DNA structure and DNA breaks at purine-pyrimidine repeats. Here we provide genetic, epigenomic and biochemical evidence for the existence of a biological process that erases Z-DNA specifically in germ cells of the mouse male foetus. We show that a previously uncharacterized zinc finger protein, ZBTB43, binds to and removes Z-DNA, preventing the formation of DNA double-strand breaks. By removing Z-DNA, ZBTB43 also promotes de novo DNA methylation at CG-containing purine-pyrimidine repeats in prospermatogonia. Therefore, the genomic and epigenomic integrity of the species is safeguarded by remodelling DNA structure in the mammalian germ line during a critical window of germline epigenome reprogramming.


Assuntos
DNA Forma Z , Animais , DNA/metabolismo , Metilação de DNA , DNA Forma Z/metabolismo , Epigenoma , Células Germinativas/metabolismo , Masculino , Mamíferos/metabolismo , Camundongos , Conformação de Ácido Nucleico , Purinas/metabolismo , Pirimidinas
6.
J Am Chem Soc ; 143(39): 16030-16040, 2021 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-34546745

RESUMO

Protein O-GlcNAcylation is an essential and dynamic regulator of myriad cellular processes, including DNA replication and repair. Proteomic studies have identified the multifunctional nuclear protein HMGB1 as O-GlcNAcylated, providing a potential link between this modification and DNA damage responses. Here, we verify the protein's endogenous modification at S100 and S107 and found that the major modification site is S100, a residue that can potentially influence HMGB1-DNA interactions. Using synthetic protein chemistry, we generated site-specifically O-GlcNAc-modified HMGB1 at S100 and characterized biochemically the effect of the sugar modification on its DNA binding activity. We found that O-GlcNAc alters HMGB1 binding to linear, nucleosomal, supercoiled, cruciform, and interstrand cross-linked damaged DNA, generally resulting in enhanced oligomerization on these DNA structures. Using cell-free extracts, we also found that O-GlcNAc reduces the ability of HMGB1 to facilitate DNA repair, resulting in error-prone processing of damaged DNA. Our results expand our understanding of the molecular consequences of O-GlcNAc and how it affects protein-DNA interfaces. Importantly, our work may also support a link between upregulated O-GlcNAc levels and increased rates of mutations in certain cancer states.


Assuntos
Acetilglucosamina/metabolismo , Dano ao DNA , Proteína HMGB1/metabolismo , Carcinoma Pulmonar de Células não Pequenas , Linhagem Celular Tumoral , Sistema Livre de Células , Reparo do DNA , Proteína HMGB1/genética , Humanos , Mutação
7.
Int J Mol Sci ; 22(14)2021 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-34299306

RESUMO

It is now difficult to believe that a biological function for the left-handed Z-DNA and Z-RNA conformations was once controversial. The papers in this Special Issue, "Z-DNA and Z-RNA: from Physical Structure to Biological Function", are based on presentations at the ABZ2021 meeting that was held virtually on 19 May 2021 and provide evidence for several biological functions of these structures. The first of its kind, this international conference gathered over 200 scientists from many disciplines to specifically address progress in research involving Z-DNA and Z-RNA. These high-energy left-handed conformers of B-DNA and A-RNA are associated with biological functions and disease outcomes, as evidenced from both mouse and human genetic studies. These alternative structures, referred to as "flipons", form under physiological conditions, regulate type I interferon responses and induce necroptosis during viral infection. They can also stimulate genetic instability, resulting in adaptive evolution and diseases such as cancer. The meeting featured cutting-edge science that was, for the most part, unpublished. We plan for the ABZ meeting to reconvene in 2022.


Assuntos
DNA Forma Z/química , Conformação de Ácido Nucleico , RNA/química , Animais , DNA Forma Z/genética , DNA Forma Z/metabolismo , Humanos , Camundongos , RNA/genética , RNA/metabolismo
9.
Front Oncol ; 11: 645475, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33833996

RESUMO

Dysregulated expression profiles of microRNAs (miRNAs) have been observed in several types of cancer, including non-small cell lung cancer (NSCLC); however, the diagnostic and prognostic potential of circulating miRNAs in NSCLC remains largely undefined. Here we found that circulating miR-320a was significantly down-regulated (~5.87-fold; p < 0.0001) in NSCLC patients (n = 80) compared to matched control plasma samples from healthy subjects (n = 80). Kaplan-Meier survival analysis revealed that NSCLC patients with lower levels of circulating miR-320a had overall poorer prognosis and survival rates compared to patients with higher levels (p < 0.0001). Moreover, the diagnostic and prognostic potential of miR-320a correlated with clinicopathological characteristics such as tumor size, tumor node metastasis (TNM) stage, and lymph node metastasis. Functionally, depletion of miR-320a in human A549 lung adenocarcinoma cells induced their metastatic potential and reduced apoptosis, which was reversed by exogenous re-expression of miR-320a mimics, indicating that miR-320a has a tumor-suppressive role in NSCLC. These results were further supported by high levels of epithelial-mesenchymal transition (EMT) marker proteins (e.g., Beta-catenin, MMP9, and E-cadherin) in lung cancer cells and tissues via immunoblot and immunohistochemistry experiments. Moreover, through bioinformatics and dual-luciferase reporter assays, we demonstrated that AKT3 was a direct target of miR-320a. In addition, AKT3-associated PI3K/AKT/mTOR protein-signaling pathways were elevated with down-regulated miR-320a levels in NSCLC. These composite data indicate that circulating miR-320a may function as a tumor-suppressor miRNA with potential as a prognostic marker for NSCLC patients.

10.
DNA Repair (Amst) ; 99: 103049, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33529944

RESUMO

Efficient mechanisms for genomic maintenance (i.e., DNA repair and DNA replication) are crucial for cell survival. Aging and obesity can lead to the dysregulation of genomic maintenance proteins/pathways and are significant risk factors for the development of cancer, metabolic disorders, and other genetic diseases. Mutations in genes that code for proteins involved in DNA repair and DNA replication can also exacerbate aging- and obesity-related disorders and lead to the development of progeroid diseases. In this review, we will discuss the roles of various DNA repair and replication proteins in aging and obesity as well as investigate the possible mechanisms by which aging and obesity can lead to the dysregulation of these proteins and pathways.


Assuntos
Envelhecimento/metabolismo , Reparo do DNA , Replicação do DNA , Obesidade/metabolismo , Envelhecimento/genética , Animais , Instabilidade Genômica , Humanos , Obesidade/genética
11.
Biochimie ; 182: 99-107, 2021 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33429003

RESUMO

Triple-negative breast cancer (TNBC) is a highly aggressive subtype of breast cancer with fewer treatment options than other types of invasive breast cancer due to the loss of the estrogen, progesterone receptors and low levels of the HER2 protein, resulting in a poor prognosis for these patients. Here, we found that the expression of the lncRNA, ZFAS1, was significantly downregulated (∼3.0-fold) in blood samples of TNBC patients (n=40) compared to matched healthy controls (n=40). Functionally, silencing of ZFAS1 promoted cell proliferation and colonization of human MDA-MB-231 TNBC cells by inhibiting the expression levels of the cyclin-dependent kinase (CDK) inhibitors p21 (CDKN1A) and p27 (CDKN1B) compared to the scrambled siRNA control cells. Further, we found that downregulation of ZFAS1 led to decreased protein levels of the epithelial markers, E-cadherin, Claudin-1, and Zo-1, with increased protein levels of the mesenchymal markers, Slug and ZEB1. In addition, by utilizing the bioinformatic tools such as RAID v2.0 (RNA Interactome Database Version 2.0), AnnoLnc (Annotate human lncRNA database), and GEPIA (Gene Expression Profiling Interactive Analysis), we identified a strong negative correlation between ZFAS1 and signal transducer and activator of transcription 3 (STAT3) gene expression (R = -0.11, p-value = 0.0002). Further, we observed that decreased ZFAS1 expression significantly (p < 0.05) increased STAT3 and phosphorylated STAT3 (at Ser727 residue) protein levels in TNBC cells. The composite data indicate that ZFAS1 may function as a tumor-suppressor lncRNA with potential as a diagnostic/prognostic marker and may offer a new target for the treatment of TNBC patients.


Assuntos
Regulação Neoplásica da Expressão Gênica , Proteínas de Neoplasias/biossíntese , RNA Longo não Codificante/biossíntese , RNA Neoplásico/biossíntese , Fator de Transcrição STAT3/biossíntese , Neoplasias de Mama Triplo Negativas/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , Proteínas de Neoplasias/genética , RNA Longo não Codificante/genética , RNA Neoplásico/genética , Fator de Transcrição STAT3/genética , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
12.
Life Sci ; 257: 118035, 2020 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-32622950

RESUMO

Despite the recent scientific advances made in cancer diagnostics and therapeutics, cancer still remains the second leading cause of death worldwide. Thus, there is a need to identify new potential biomarkers/molecular targets to improve the diagnosis and treatment of cancer patients. In this regard, long non-coding RNAs (lncRNAs), a type of non-coding RNA molecule, have been found to play important roles in diverse biological processes, including tumorigenesis, and may provide new biomarkers and/or molecular targets for the improved detection of treatment of cancer. For example, one lncRNA, tissue differentiation-inducing non-protein coding RNA (TINCR) has been found to be significantly dysregulated in many cancers, and has an impact on tumor development and progression through targeting pivotal molecules in cancer-associated signaling pathways. Hence, based on recent discoveries, herein, we discuss the regulatory functions and the underlying mechanisms of how TINCR regulates signaling pathways attributed to cancer hallmarks associated with the pathogenesis of various human cancers. We also highlight studies assessing its potential clinical utility as a biomarker/target for early detection, cancer risk stratification, and personalized cancer therapies.


Assuntos
Neoplasias/genética , RNA Longo não Codificante/genética , RNA Longo não Codificante/metabolismo , Biomarcadores Tumorais/genética , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Neoplasias/metabolismo , Transdução de Sinais/genética
13.
Biochimie ; 176: 62-70, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32634463

RESUMO

The early detection and diagnosis of cancer is critical to optimize the treatment and management of cancer patients. Typical methods such as imaging and tissue biopsy are invasive, time-consuming, and often imprecise. Thus, recent technological advances of dependable, facile, and minimally invasive collectible oncogenic biomarkers using human biofluids and secretions have been an active area of research. Recently, circulating long non-coding RNAs (lncRNAs) have been identified as promising biomarkers that fulfill many recommended properties of successful biomarkers for cancer diagnosis and prognosis. LncRNAs play essential roles in many cellular processes including DNA repair, cell proliferation, and epithelial-to-mesenchymal transition (EMT) by regulating the expression of various genes associated with cancer development and progression. Herein, we discuss the regulatory functions/pathways associated with multiple cancer-associated lncRNAs and their potential as prognostic/diagnostic markers for breast and cervical cancers. Additionally, we provide a correlation between lncRNA levels in the blood and clinicopathological data, including sensitivity, specificity, and Area Under Curve (AUC) merits of model performance value.


Assuntos
Biomarcadores Tumorais/sangue , Neoplasias da Mama/sangue , Ácidos Nucleicos Livres/sangue , RNA Longo não Codificante/sangue , RNA Neoplásico/sangue , Neoplasias do Colo do Útero/sangue , Feminino , Humanos , Biópsia Líquida , Prognóstico , Neoplasias do Colo do Útero/patologia
14.
Mol Cell Oncol ; 7(3): 1743807, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32391433

RESUMO

Repetitive sequences can form a variety of alternative DNA structures (non-B DNA) that can modulate transcription, replication, and repair. However, non-B DNA-forming sequences can also stimulate mutagenesis, and are enriched at mutation hotspots in human cancer genomes. Interestingly, different types of non-B DNA stimulate mutagenesis via distinct repair processing mechanisms.

15.
Transl Oncol ; 13(8): 100774, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32450549

RESUMO

Based on epidemiological data provided by the World Health Organization (2018), cancer is the second most prevalent cause of death worldwide. Several factors are thought to contribute to the high mortality rate in cancer patients, including less-than-optimal diagnostic and therapeutic strategies. Thus, there is an urgent need to identify accurate biomarkers with diagnostic, prognostic, and potential therapeutic applications. In this regard, long noncoding RNAs (lncRNAs) hold immense potential due to their regulatory roles in cancer development and associated cancer hallmarks. Recently, CASC9 transcripts have attracted significant attention due to their altered expression during the pathogenesis of cancer and their apparent contributions to various cancer-associated phenotypes involving a broad spectrum of molecular mechanisms. Here, we have provided an in-depth review describing the known functions of the lncRNA CASC9 in cancer development and progression.

16.
Cancer Res ; 80(11): 2075-2082, 2020 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-32152151

RESUMO

Chromatin-associated architectural proteins are part of a fundamental support system for cellular DNA-dependent processes and can maintain/modulate the efficiency of DNA replication, transcription, and DNA repair. Interestingly, prognostic outcomes of many cancer types have been linked with the expression levels of several of these architectural proteins. The high mobility group box (HMGB) architectural protein family has been well studied in this regard. The differential expression levels of HMGB proteins and/or mRNAs and their implications in cancer etiology and prognosis present the potential of novel targets that can be explored to increase the efficacy of existing cancer therapies. HMGB1, the most studied member of the HMGB protein family, has pleiotropic roles in cells including an association with nucleotide excision repair, base excision repair, mismatch repair, and DNA double-strand break repair. Moreover, the HMGB proteins have been identified in regulating DNA damage responses and cell survival following treatment with DNA-damaging agents and, as such, may play roles in modulating the efficacy of chemotherapeutic drugs by modulating DNA repair pathways. Here, we discuss the functions of HMGB proteins in DNA damage processing and their potential roles in cancer etiology, prognosis, and therapeutics.


Assuntos
Proteínas HMGB/genética , Neoplasias/genética , Neoplasias/terapia , Animais , Cromossomos , Dano ao DNA , Reparo do DNA , Proteínas HMGB/metabolismo , Humanos , Terapia de Alvo Molecular , Neoplasias/metabolismo
17.
Chem Commun (Camb) ; 56(13): 1996-1999, 2020 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-31960843

RESUMO

Here, we developed a coralyne-based, 'light-up' intercalator displacement assay to identify molecular stabilizers of triplex DNA using a sequence from a chromosomal breakpoint hotspot in the human c-MYC oncogene. Its potential to identify triplex DNA ligands was demonstrated using BePI and doxorubicin. Identification of triplex-interacting ligands may allow the regulation of genetic instability in human genomes.


Assuntos
DNA/análise , Substâncias Intercalantes/química , Alcaloides de Berberina/química , DNA/química , Doxorrubicina/química , Genoma Humano , Instabilidade Genômica , Humanos , Indóis/química , Ligantes , Proteínas Proto-Oncogênicas c-myc/genética , Piridinas/química
18.
Nat Commun ; 11(1): 236, 2020 01 13.
Artigo em Inglês | MEDLINE | ID: mdl-31932649

RESUMO

Alternative DNA structure-forming sequences can stimulate mutagenesis and are enriched at mutation hotspots in human cancer genomes, implicating them in disease etiology. However, the mechanisms involved are not well characterized. Here, we discover that Z-DNA is mutagenic in yeast as well as human cells, and that the nucleotide excision repair complex, Rad10-Rad1(ERCC1-XPF), and the mismatch repair complex, Msh2-Msh3, are required for Z-DNA-induced genetic instability in yeast and human cells. Both ERCC1-XPF and MSH2-MSH3 bind to Z-DNA-forming sequences, though ERCC1-XPF recruitment to Z-DNA is dependent on MSH2-MSH3. Moreover, ERCC1-XPF-dependent DNA strand-breaks occur near the Z-DNA-forming region in human cell extracts, and we model these interactions at the sub-molecular level. We propose a relationship in which these complexes recognize and process Z-DNA in eukaryotes, representing a mechanism of Z-DNA-induced genomic instability.


Assuntos
Enzimas Reparadoras do DNA/metabolismo , Reparo do DNA , Proteínas de Ligação a DNA/metabolismo , DNA/química , Instabilidade Genômica , Linhagem Celular , Simulação por Computador , DNA/metabolismo , Dano ao DNA , Reparo do DNA/genética , Enzimas Reparadoras do DNA/genética , Proteínas de Ligação a DNA/genética , Humanos , Modelos Genéticos , Modelos Moleculares , Mutação , Conformação de Ácido Nucleico , Saccharomyces cerevisiae/genética
19.
Cancer Sci ; 111(3): 826-839, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31520555

RESUMO

Despite the availability of various diagnostic procedures, a tissue biopsy is still indispensable for the routine diagnosis of lung cancer. However, inaccurate diagnoses can occur, leading to inefficient cancer management. In this context, use of circulating microRNAs (miRNAs) may serve as diagnostic tools as liquid biopsies, and as biomarkers to better understand the molecular mechanisms involved in the progression of cancer. We identified miR-590-5p as a potential prognostic marker in the progression of non-small cell lung cancer (NSCLC). We were able to detect this miRNA in blood plasma samples of NSCLC patients through quantitative real-time PCR. Our data showed an ~7.5-fold downregulation of miR-590-5p in NSCLC patients compared to healthy controls, which correlated with several clinicopathological features. Further, overexpression of miR-590-5p led to decreased cell viability, proliferation, colony formation, migration, and invasion potential of lung cancer cells, whereas its knockdown showed the opposite effect. In addition, the levels of several proteins involved in the epithelial-to-mesenchymal transition negatively correlated with miR-590-5p levels in lung adenocarcinoma cells and tumors of NSCLC patients. Further, dual-luciferase reporter assays identified STAT3 as a direct target of miR-590-5p, which negatively regulated STAT3 activation and its downstream signaling molecules (eg, Cyclin D1, c-Myc, Vimentin, and ß-catenin) involved in tumorigenesis. Taken together, our study suggests that miR-590-5p functions as a tumor suppressor in NSCLC through regulating the STAT3 pathway, and may serve as a useful biomarker for the diagnosis/prognosis of NSCLC, and as a potential therapeutic target for the treatment of NSCLC.


Assuntos
Biomarcadores Tumorais/genética , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , MicroRNA Circulante/genética , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , MicroRNAs/genética , Células A549 , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Sobrevivência Celular/genética , Regulação para Baixo/genética , Transição Epitelial-Mesenquimal/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Biópsia Líquida/métodos , Masculino , Pessoa de Meia-Idade , Prognóstico , Fator de Transcrição STAT3/genética , Transdução de Sinais/genética
20.
Front Oncol ; 9: 901, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31620362

RESUMO

Limitations in current diagnostic procedures warrant identification of new methodologies to improve diagnoses of cancer patients. In this context, long non-coding RNAs (lncRNAs) have emerged as stable biomarkers which are expressed abundantly in tumors. Importantly, these can be detected at all stages of tumor development, and thus may provide potential biomarkers and/or therapeutic targets. Recently, we suggested that aberrant levels of lncRNAs can be used to determine the invasive and metastatic potential of tumor cells. Further, direct correlations of lncRNAs with cancer-derived inflammation, metastasis, epithelial-to-mesenchymal transition, and other hallmarks of cancer indicate their potential as biomarkers and targets for cancer. Thus, in this review we have discussed the importance of small nucleolar RNA host gene 12 (SNHG12), a lncRNA, as a potential biomarker for a variety of cancers. A meta-analysis of a large cohort of cancer patients revealed that SNHG12 may also serve as a potential target for cancer-directed interventions due to its involvement in unfolded protein responses, which many tumor cells exploit to both evade immune-mediated attack and enhance the polarization of effector immune cells (e.g., macrophages and T cells). Thus, we propose that SNHG12 may serve as both a biomarker and a druggable therapeutic target with promising clinical potential.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA