Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioresour Technol ; 387: 129595, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37541546

RESUMO

Despite known metabolic versatility of Burkholderia spp., sugar metabolism and end-product synthesis patterns in Burkholderia thailandensis have been poorly characterized. This work has demonstrated that B. thailandensis is capable of simultaneously uptaking glucose and xylose and accumulating up to 64% of its dry mass as poly(3-hydroxyalkanoate) (PHA) biopolymers, resulting in a PHA titer of up to 3.8 g L-1 in shake flasks. Rhamnolipids - mainly (68-75%) in the form of Rha-Rha-C14-C14 - were produced concomitantly with a titer typically in the range of 0.2-0.4 g L-1. Gluconic and xylonic acids were also detected in titers of up to 5.3 g L-1, and while gluconic acid appeared to be back consumed, xylonic acid formed as a major end product. This first example of co-production of three products from mixed sugars using B. thailandensis paves the way for improving biorefinery economics.


Assuntos
Burkholderia , Açúcares , Açúcares/metabolismo , Burkholderia/metabolismo , Glucose/metabolismo
2.
N Biotechnol ; 77: 40-49, 2023 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-37390901

RESUMO

Glucose and xylose are fermentable sugars readily available from lignocellulosic biomass, and are a sustainable carbon substrate supporting industrial biotechnology. Three strains were assessed in this work - Paraburkholderia sacchari, Hydrogenophaga pseudoflava, and Bacillus megaterium - for their ability to uptake both C5 and C6 sugars contained in a hardwood hydrolysate produced via a thermomechanical pulping-based process with concomitant production of poly(3-hydroxyalkanoate) (PHA) biopolymers. In batch conditions, B. megaterium showed poor growth after 12 h, minimal uptake of xylose throughout the cultivation, and accumulated a maximum of only 25 % of the dry biomass as PHA. The other strains simultaneously utilized both sugars, although glucose uptake was faster than xylose. From hardwood hydrolysate, P. sacchari accumulated 57 % of its biomass as PHA within 24 h, whereas H. pseudoflava achieved an intracellular PHA content of 84 % by 72 h. The molecular weight of the PHA synthesized by H. pseudoflava (520.2 kDa) was higher than that of P. sacchari (265.5 kDa). When the medium was supplemented with propionic acid, the latter was rapidly consumed by both strains and incorporated as 3-hydroxyvalerate subunits into the polymer, demonstrating the potential for production of polymers with improved properties and value. H. pseudoflava incorporated 3-hydroxyvalerate subunits with at least a 3-fold higher yield, and produced polymers with higher 3-hydroxyvalerate content than P. sacchari. Overall, this work has shown that H. pseudoflava can be an excellent candidate for bioconversion of lignocellulosic sugars to PHA polymers or copolymers as part of an integrated biorefinery.


Assuntos
Poli-Hidroxialcanoatos , Açúcares , Poliésteres/química , Xilose , Hidrólise
3.
Front Cell Infect Microbiol ; 13: 1287418, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38239502

RESUMO

Introduction: The fungal G protein-coupled receptors Ste2 and Ste3 are vital in mediating directional hyphal growth of the agricultural pathogen Fusarium graminearum towards wheat plants. This chemotropism is induced by a catalytic product of peroxidases secreted by the wheat. Currently, the identity of this product, and the substrate it is generated from, are not known. Methods and results: We provide evidence that a peroxidase substrate is derived from F. graminearum conidia and report a simple method to extract and purify the FgSte2-activating ligand for analyses by mass spectrometry. The mass spectra arising from t he ligand extract are characteristic of a 400 Da carbohydrate moiety. Consistent with this type of molecule, glycosidase treatment of F. graminearum conidia prior to peroxidase treatment significantly reduced the amount of ligand extracted. Interestingly, availability of the peroxidase substrate appears to depend on the presence of both FgSte2 and FgSte3, as knockout of one or the other reduces the chemotropism-inducing effect of the extracts. Conclusions: While further characterization is necessary, identification of the F. graminearum-derived peroxidase substrate and the FgSte2-activating ligand will unearth deeper insights into the intricate mechanisms that underlie fungal pathogenesis in cereal crops, unveiling novel avenues for inhibitory interventions.


Assuntos
Fusarium , Peroxidase , Ligantes , Peroxidases/farmacologia , Doenças das Plantas/microbiologia
4.
J Med Chem ; 65(12): 8332-8344, 2022 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-35658102

RESUMO

Archaeosomes composed of sulfated lactosyl archaeol (SLA) glycolipids from stereoisomerically pure archaeol (1) are vaccine adjuvants that can boost immunogenicity and vaccine efficacy in preclinical models. Herein, we report a new synthesis of 2,3-bis((3,7,11,15-tetramethylhexadecyl)oxy) propan-1-ol (3) by treating (±)-3-benzyloxy-1,2-propanediol with a mesylated phytol derivative through a double nucleophilic substitution reaction, followed by reductive debenzylation. Three SLA archaeosomes from archaeols of different chiral purities were prepared, and the effect of stereochemistry on their adjuvanticity toward ovalbumin was investigated. It was found that all SLA archaeosomes induced strong humoral and cell-mediated antigen-specific immune responses following immunization of C57BL/6NCrl mice, with no significant differences, irrespective of the chiral purities. The responses were comparable or better than those obtained using mimetics of approved adjuvants. The performance of SLA archaeosomes during immunization and their lack of dependence on the stereochemistry of archaeol points toward a promising, safe, scalable, and economically viable vaccine adjuvant system.


Assuntos
Glicolipídeos , Lipossomos , Adjuvantes Imunológicos/farmacologia , Animais , Glicolipídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Ovalbumina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...