Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Nat Microbiol ; 7(10): 1568-1579, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36123438

RESUMO

The ancient, ongoing coevolutionary battle between bacteria and their viruses, bacteriophages, has given rise to sophisticated immune systems including restriction-modification and CRISPR-Cas. Many additional anti-phage systems have been identified using computational approaches based on genomic co-location within defence islands, but these screens may not be exhaustive. Here we developed an experimental selection scheme agnostic to genomic context to identify defence systems in 71 diverse E. coli strains. Our results unveil 21 conserved defence systems, none of which were previously detected as enriched in defence islands. Additionally, our work indicates that intact prophages and mobile genetic elements are primary reservoirs and distributors of defence systems in E. coli, with defence systems typically carried in specific locations or hotspots. These hotspots encode dozens of additional uncharacterized defence system candidates. Our findings reveal an extended landscape of antiviral immunity in E. coli and provide an approach for mapping defence systems in other species.


Assuntos
Bacteriófagos , Antivirais , Bacteriófagos/genética , Sistemas CRISPR-Cas , Escherichia coli/genética , Prófagos/genética
3.
mBio ; 12(5): e0238821, 2021 10 26.
Artigo em Inglês | MEDLINE | ID: mdl-34517761

RESUMO

Bacteria compete against related individuals by delivering toxins. In myxobacteria, a key delivery and kin discrimination mechanism is called outer membrane (OM) exchange (OME). Here, cells that display compatible polymorphic cell surface receptors recognize one another and bidirectionally transfer OM content. Included in the cargo is a suite of polymorphic SitA lipoprotein toxins. Consequently, OME between compatible cells that are not clonemates results in intoxication, while exchange between clonemates is harmonious because cells express a cognate repertoire of immunity proteins, which themselves are not transferred. SitA toxins belong to six nonhomologous families classified by sequence conservation within their N-terminal "escort domains" (EDs), while their C termini contain polymorphic nucleases that target the cytoplasmic compartment. To investigate how toxins delivered to the OM by OME translocate to the cytoplasm, we selected transposon mutants resistant to each family. Our screens identified eight genes that conferred resistance in a SitA family-specific manner. Most of these genes are predicted to localize to the cell envelope, and some resemble proteins that colicins exploit to gain cell entry. By constructing functional chimeric SitAs between families, we show that the ED determines the specificity of resistance. Importantly, a mutant that confers resistance to all six SitA families was discovered. This gene was named traC and plays an accessory role with traAB in OME. This work thus provides insight into the mechanism of kin discrimination in myxobacteria and provides working models for how SitA toxins exploit host proteins to gain cytoplasmic entry. IMPORTANCE Many bacterial species use diverse systems to deliver bacteriocins or toxins to neighboring competing cells. These systems are often selective in targeting cells that are related to themselves and therefore compete in the same niches for resources. How these systems specifically identify target cells and deliver toxins to particular cellular compartments is a fundamental question. This study uses the model social bacterium Myxococcus xanthus to unravel how its kin discrimination system, called outer membrane exchange, works. Along with the TraA polymorphic cell surface receptor that identifies related individuals with compatible receptors, this work discovered a new protein, called TraC, that functions in this discrimination system. Additionally, genetic screens identified host factors that are proposed to be involved in the cytoplasmic entry of lipoprotein toxins from the OM. This work complements and broadens our mechanistic understanding of how bacteria use transport systems to discriminate against related foes to build clonal populations.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Membrana Externa Bacteriana/metabolismo , Lipoproteínas/metabolismo , Myxococcus xanthus/metabolismo , Toxinas Biológicas/metabolismo , Proteínas da Membrana Bacteriana Externa/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Lipoproteínas/genética , Myxococcus xanthus/genética , Toxinas Biológicas/genética
4.
ISME J ; 14(10): 2474-2487, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32565537

RESUMO

Many species form distinct social groups that provide fitness advantages to individuals. However, the evolutionary processes that generate new social groups are not well understood. Here we examined recently diverged natural isolates of the model social bacterium, Myxococcus xanthus, to probe the genetic mechanisms and evolutionary processes of kin discrimination that occurred naturally in soil. We show that social incompatibilities were formed from horizontal gene transfer of effectors belonging to three distinct polymorphic toxin systems; outer membrane exchange, type VI secretion and rearrangement hotspot systems. Strikingly, the unique toxin effectors and their respective immunity genes that are responsible for social incompatibilities reside on mobile genetic elements, which make up nearly all of the genotypic variation between isolates within clades. By disrupting these three toxin systems, we engineered social harmony between strains that were originally incompatible. In addition, a horizontal allele swap of a single kin recognition receptor changed social interactions and competition outcomes. Our results provide a case study for how horizontal gene transfer led to social diversification in a natural context. Finally, we show how genomic information of kin discriminatory loci can be used to predict social interactions.


Assuntos
Myxococcus xanthus , Alelos , Evolução Biológica , Genômica , Humanos , Sequências Repetitivas Dispersas , Myxococcus xanthus/genética
5.
Proc Natl Acad Sci U S A ; 116(49): 24808-24818, 2019 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-31744876

RESUMO

Myxobacteria are an example of how single-cell individuals can transition into multicellular life by an aggregation strategy. For these and all organisms that consist of social groups of cells, discrimination against, and exclusion of, nonself is critical. In myxobacteria, TraA is a polymorphic cell surface receptor that identifies kin by homotypic binding, and in so doing exchanges outer membrane (OM) proteins and lipids between cells with compatible receptors. However, TraA variability alone is not sufficient to discriminate against all cells, as traA allele diversity is not necessarily high among local strains. To increase discrimination ability, myxobacteria include polymorphic OM lipoprotein toxins called SitA in their delivered cargo, which poison recipient cells that lack the cognate, allele-specific SitI immunity protein. We previously characterized 3 SitAI toxin/immunity pairs that belong to 2 families. Here, we discover 4 additional SitA families. Each family is unique in sequence, but share the characteristic features of SitA: OM-associated toxins delivered by TraA. We demonstrate that, within a SitA family, C-terminal nuclease domains are polymorphic and often modular. Remarkably, sitA loci are strikingly numerous and diverse, with most genomes possessing >30 and up to 83 distinct sitAI loci. Interestingly, all SitA protein families are serially transferred between cells, allowing a SitA inhibitor cell to poison multiple targets, including cells that never made direct contact. The expansive suites of sitAI loci thus serve as identify barcodes to exquisitely discriminate against nonself to ensure populations are genetically homogenous to conduct cooperative behaviors.


Assuntos
Toxinas Bacterianas/genética , Toxinas Bacterianas/isolamento & purificação , Myxococcales/genética , Myxococcales/metabolismo , Receptores de Superfície Celular/metabolismo , Alelos , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Toxinas Bacterianas/classificação , Toxinas Bacterianas/imunologia , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Lipoproteínas , Myxococcus xanthus/genética , Myxococcus xanthus/metabolismo , Filogenia , Análise de Sequência
6.
Biophys J ; 113(11): 2477-2486, 2017 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-29212001

RESUMO

Swarming bacteria use kin discrimination to preferentially associate with their clonemates for certain cooperative behaviors. Kin discrimination can manifest as an apparent demarcation line (a region lacking cells or with much lower cell density) between antagonist strains swarming toward each other. In contrast, two identical strains merge with no demarcation. Experimental studies suggest contact-dependent killing between different strains as a mechanism of kin discrimination, but it is not clear whether this killing is sufficient to explain the observed patterns. Here, we investigate the formation of demarcation line with a mathematical model. First, using data from competition experiments between kin discriminating strains of Myxococcus xanthus and Proteus mirabilis, we found the rates of killing between the strains to be highly asymmetric, i.e., one strain kills another at a much higher rate. Then, to investigate how such asymmetric interactions can lead to a stable demarcation line, we construct reaction-diffusion models for colony expansion of kin-discriminatory strains. Our results demonstrate that a stable demarcation line can form when both cell movement and cell growth cease at low nutrient levels. Further, our study suggests that, depending on the initial separation between the inoculated colonies, the demarcation line may move transiently before stabilizing. We validated these model predictions by observing dynamics of merger between two M. xanthus strains, where one strain expresses a toxin protein that kills a second strain lacking the corresponding antitoxin. Our study therefore provides a theoretical understanding of demarcation line formation between kin-discriminatory populations, and can be used for analyzing and designing future experiments.


Assuntos
Movimento , Myxococcus xanthus/fisiologia , Proteus mirabilis/fisiologia , Modelos Biológicos , Myxococcus xanthus/citologia , Proteus mirabilis/citologia
7.
Elife ; 62017 08 18.
Artigo em Inglês | MEDLINE | ID: mdl-28820387

RESUMO

Myxobacteria are known for complex social behaviors including outer membrane exchange (OME), in which cells exchange large amounts of outer membrane lipids and proteins upon contact. The TraA cell surface receptor selects OME partners based on a variable domain. However, traA polymorphism alone is not sufficient to precisely discriminate kin. Here, we report a novel family of OME-delivered toxins that promote kin discrimination of OME partners. These SitA lipoprotein toxins are polymorphic and widespread in myxobacteria. Each sitA is associated with a cognate sitI immunity gene, and in some cases a sitB accessory gene. Remarkably, we show that SitA is transferred serially between target cells, allowing the toxins to move cell-to-cell like an infectious agent. Consequently, SitA toxins define strong identity barriers between strains and likely contribute to population structure, maintenance of cooperation, and strain diversification. Moreover, these results highlight the diversity of systems evolved to deliver toxins between bacteria.


Assuntos
Aderência Bacteriana , Proteínas da Membrana Bacteriana Externa/metabolismo , Toxinas Bacterianas/metabolismo , Metabolismo dos Lipídeos , Myxococcales/fisiologia , Transporte Biológico
8.
Bioessays ; 38(4): 306-15, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26898360

RESUMO

Damage repair is a fundamental requirement of all life as organisms find themselves in challenging and fluctuating environments. In particular, damage to the barrier between an organism and its environment (e.g. skin, plasma membrane, bacterial cell envelope) is frequent because these organs/organelles directly interact with the external world. Here, we discuss the general strategies that bacteria use to cope with damage to their cell envelope and their repair limits. We then describe a novel damage-coping mechanism used by multicellular myxobacteria. We propose that cell-cell transfer of membrane material within a population serves as a wound-healing strategy and provide evidence for its utility. We suggest that--similar to how tissues in eukaryotes have evolved cooperative methods of damage repair--so too have some bacteria that live a multicellular lifestyle.


Assuntos
Membrana Celular/fisiologia , Parede Celular/fisiologia , Interações Microbianas/fisiologia , Myxococcales/fisiologia , Esporos Bacterianos/fisiologia , Proteínas da Membrana Bacteriana Externa/metabolismo , Transporte Biológico , Membrana Celular/química , Parede Celular/química , Retículo Endoplasmático/metabolismo , Lipopolissacarídeos/metabolismo , Lisossomos/metabolismo , Mitocôndrias/metabolismo
9.
J Bacteriol ; 198(6): 994-1004, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26787762

RESUMO

UNLABELLED: Myxobacteria form complex social communities that elicit multicellular behaviors. One such behavior is kin recognition, in which cells identify siblings via their polymorphic TraA cell surface receptor, to transiently fuse outer membranes and exchange their contents. In addition, outer membrane exchange (OME) regulates behaviors, such as inhibition of wild-type Myxococcus xanthus (DK1622) from swarming. Here we monitored the fate of motile cells and surprisingly found they were killed by nonmotile siblings. The kill phenotype required OME (i.e., was TraA dependent). The genetic basis of killing was traced to ancestral strains used to construct DK1622. Specifically, the kill phenotype mapped to a large "polyploid prophage," Mx alpha. Sensitive strains contained a 200-kb deletion that removed two of three Mx alpha units. To explain these results, we suggest that Mx alpha expresses a toxin-antitoxin cassette that uses the OME machinery of M. xanthus to transfer a toxin that makes the population "addicted" to Mx alpha. Thus, siblings that lost Mx alpha units (no immunity) are killed by cells that harbor the element. To test this, an Mx alpha-harboring laboratory strain was engineered (by traA allele swap) to recognize a closely related species, Myxococcus fulvus. As a result, M. fulvus, which lacks Mx alpha, was killed. These TraA-mediated antagonisms provide an explanation for how kin recognition specificity might have evolved in myxobacteria. That is, recognition specificity is determined by polymorphisms in traA, which we hypothesize were selected for because OME with non-kin leads to lethal outcomes. IMPORTANCE: The transition from single cell to multicellular life is considered a major evolutionary event. Myxobacteria have successfully made this transition. For example, in response to starvation, individual cells aggregate into multicellular fruiting bodies wherein cells differentiate into spores. To build fruits, cells need to recognize their siblings, and in part, this is mediated by the TraA cell surface receptor. Surprisingly, we report that TraA recognition can also involve sibling killing. We show that killing originates from a prophage-like element that has apparently hijacked the TraA system to deliver a toxin to kin. We hypothesize that this killing system has imposed selective pressures on kin recognition, which in turn has resulted in TraA polymorphisms and hence many different recognition groups.


Assuntos
Antibiose , Dosagem de Genes , Myxococcus xanthus/fisiologia , Myxococcus xanthus/virologia , Prófagos/genética , Receptores de Superfície Celular/metabolismo , Toxinas Bacterianas/metabolismo , Membrana Celular/metabolismo , Myxococcus xanthus/genética , Transporte Proteico , Deleção de Sequência
10.
J Mol Biol ; 427(23): 3709-21, 2015 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-26254571

RESUMO

Prokaryotes often reside in groups where a high degree of relatedness has allowed the evolution of cooperative behaviors. However, very few bacteria or archaea have made the successful transition from unicellular to obligate multicellular life. A notable exception is the myxobacteria, in which cells cooperate to perform group functions highlighted by fruiting body development, an obligate multicellular function. Like all multicellular organisms, myxobacteria face challenges in how to organize and maintain multicellularity. These challenges include maintaining population homeostasis, carrying out tissue repair and regulating the behavior of non-cooperators. Here, we describe the major cooperative behaviors that myxobacteria use: motility, predation and development. In addition, this review emphasizes recent discoveries in the social behavior of outer membrane exchange, wherein kin share outer membrane contents. Finally, we review evidence that outer membrane exchange may be involved in regulating population homeostasis, thus serving as a social tool for myxobacteria to make the cyclic transitions from unicellular to multicellular states.


Assuntos
Proteínas da Membrana Bacteriana Externa/metabolismo , Myxococcales/fisiologia , Myxococcales/crescimento & desenvolvimento
11.
J Bacteriol ; 196(10): 1807-14, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24391054

RESUMO

Myxobacteria are social microbes that exhibit complex multicellular behaviors. By use of fluorescent reporters, we show that Myxococcus xanthus isolates produce long narrow filaments that are enclosed by the outer membrane (OM) and contain proteins. We show that these OM tube (OMT) structures are produced at surprisingly high levels when cells are placed in liquid medium or buffer without agitation. OMTs can be long and easily exceed multiple cell lengths. When viewed by transmission electron microscopy, their morphology varies between tubes and chain-like structures. Intermediate-like structures are also found, suggesting that OMTs may transition between these two morphotypes. In support of this, video epifluorescence microscopy found that OMTs in solution dynamically twist and jiggle. On hard surfaces, myxobacteria glide, and upon cell-cell contact, they can efficiently exchange their OM proteins and lipids by a TraAB-dependent mechanism. Although the structure of OMTs hints at a possible role as conduits for exchange, evidence is presented to the contrary. For example, abundant OMT production occurs in traA or traB mutants and when cells are grown in liquid medium, yet transfer cannot occur under these conditions. Thus, genetic and environmental conditions that promote OMT production are incongruent with OM exchange.


Assuntos
Proteínas da Membrana Bacteriana Externa/fisiologia , Membrana Celular/fisiologia , Myxococcus xanthus/fisiologia , Antibacterianos/farmacologia , Técnicas Bacteriológicas , Regulação Bacteriana da Expressão Gênica/fisiologia , Proteínas Luminescentes , Interações Microbianas , Myxococcus xanthus/citologia , Myxococcus xanthus/efeitos dos fármacos , Coloração e Rotulagem , Proteína Vermelha Fluorescente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...