Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Physiol Plant ; 170(2): 280-298, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32623739

RESUMO

Ongoing global changes affect ecosystems and open up new opportunities for biological invasion. The ability of invasive species to rapidly adapt to new environments represents a relevant model for studying short-term adaptation mechanisms. The aquatic invasive plant, Ludwigia grandiflora subsp. hexapetala, is classified as harmful in European rivers. In French wet meadows, this species has shown a rapid transition from aquatic to terrestrial environments with emergence of two distinct morphotypes in 5 years. To understand the heritable mechanisms involved in adjustment to such a new environment, we investigate both genetic and epigenetic as possible sources of flexibility involved in this fast terrestrial transition. We found a low overall genetic differentiation between the two morphotypes arguing against the possibility that terrestrial morphotype emerged from a new adaptive genetic capacity. Artificial hypomethylation was induced on both morphotypes to assess the epigenetic hypothesis. We analyzed global DNA methylation, morphological changes, phytohormones and metabolite profiles of both morphotype responses in both aquatic and terrestrial conditions in shoot and root tissues. Hypomethylation significantly affected morphological variables, phytohormone levels and the amount of some metabolites. The effects of hypomethylation depended on morphotypes, conditions and plant tissues, which highlighted differences among the morphotypes and their plasticity. Using a correlative integrative approach, we showed that hypomethylation of the aquatic morphotype mimicked the characteristics of the terrestrial morphotype. Our data suggest that DNA methylation rather than a new adaptive genetic capacity is playing a key role in L. grandiflora subsp. hexapetala plasticity during its rapid aquatic to terrestrial transition.


Assuntos
Ecossistema , Onagraceae , Metilação de DNA , Espécies Introduzidas , Plantas
2.
Sci Immunol ; 5(45)2020 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-32169953

RESUMO

The antibodies of jawless vertebrates consist of leucine-rich repeat arrays encoded by somatically assembled VLRB genes. It is unknown how the incomplete germline VLRB loci are converted into functional antibody genes during B lymphocyte development in lampreys. In Lampetra planeri larvae lacking the cytidine deaminase CDA2 gene, VLRB assembly fails, whereas the T lineage-associated VLRA and VLRC antigen receptor gene assemblies occur normally. Thus, CDA2 acts in a B cell lineage-specific fashion to support the somatic diversification of VLRB antibody genes. CDA2 is closely related to activation-induced cytidine deaminase (AID), which is essential for the elaboration of immunoglobulin gene repertoires in jawed vertebrates. Our results thus identify a convergent mechanism of antigen receptor gene assembly and diversification that independently evolved in the two sister branches of vertebrates.


Assuntos
Anticorpos Monoclonais/genética , Citidina Desaminase/genética , Lampreias/genética , Receptores de Antígenos/genética , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/metabolismo , Citidina Desaminase/imunologia , Citidina Desaminase/metabolismo , Lampreias/imunologia , Lampreias/metabolismo , Receptores de Antígenos/imunologia , Receptores de Antígenos/metabolismo
3.
Aquat Toxicol ; 126: 256-65, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23237706

RESUMO

The presence of pesticides in the environment results in potential unwanted effects on non-target species. Freshwater organisms inhabiting water bodies adjacent to agricultural areas, such as ditches, ponds and marshes, are good models to test such effects as various pesticides may reach these habitats through several ways, including aerial drift, run-off, and drainage. Diquat is a non-selective herbicide used for crop protection or for weed control in such water bodies. In this study, we investigated the effects of diquat on a widely spread aquatic invertebrate, the holarctic freshwater snail Lymnaea stagnalis. Due to the known redox-cycling properties of diquat, we studied transcript expression and enzymatic activities relative to oxidative and general stress in the haemolymph and gonado-digestive complex (GDC). As diquat is not persistent, snails were exposed for short times (5, 24, and 48 h) to ecologically relevant concentrations (22.2, 44.4, and 222.2 µg l(-1)) of diquat dibromide. RT-qPCR was used to quantify the transcription of genes encoding catalase (cat), a cytosolic superoxide dismutase (Cu/Zn-sod), a selenium-dependent glutathione peroxidase (gpx), a glutathione reductase (gred), the retinoid X receptor (rxr), two heat shock proteins (hsp40 and hsp70), cortactin (cor) and the two ribosomal genes r18S and r28s. Enzymatic activities of SOD, Gpx, Gred and glutathione S-transferase (GST) were investigated in the GDC using spectrophoto/fluorometric methods. Opposite trends were obtained in the haemolymph depending on the herbicide concentration. At the lowest concentration, effects were mainly observed after 24 h of exposure, with over-transcription of cor, hsp40, rxr, and sod, whereas higher concentrations down-regulated the expression of most of the studied transcripts, especially after 48 h of exposure. In the GDC, earlier responses were observed and the fold-change magnitude was generally much higher: transcription of all target genes increased significantly (or non-significantly for cat) after 5 h of exposure, and went back to control levels afterwards, suggesting the onset of an early response to oxidative stress associated to the unbalance of reactive oxygen species (ROS) in hepatocytes. Although increases obtained for Gred and SOD activities were globally consistent with their respective transcript expressions, up-regulation of transcription was not always correlated with increase of enzymatic activity, indicating that diquat might affect steps downstream of transcription. However, constitutive levels of enzymatic activities were at least maintained. In conclusion, diquat was shown to affect expression of the whole set of studied transcripts, reflecting their suitability as markers of early response to oxidative stress in L. stagnalis.


Assuntos
Diquat/toxicidade , Regulação da Expressão Gênica/efeitos dos fármacos , Lymnaea/efeitos dos fármacos , Poluentes Químicos da Água/toxicidade , Animais , Ativação Enzimática/efeitos dos fármacos , Enzimas/metabolismo , Perfilação da Expressão Gênica , Hemolinfa/enzimologia , Hemolinfa/metabolismo , Lymnaea/enzimologia , Estresse Fisiológico/efeitos dos fármacos , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...