Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Biochim Biophys Acta Mol Cell Res ; 1871(1): 119602, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37778471

RESUMO

The enzyme L-Dopa Decarboxylase (DDC) synthesizes the catecholamine dopamine and the indolamine serotonin. Apart from its role in the brain as a neurotransmitter biosynthetic enzyme, DDC has been detected also in the liver and other peripheral organs, where it is implicated in cell proliferation, apoptosis, and host-virus interactions. Dengue virus (DENV) suppresses DDC expression at the later stages of infection, during which DENV also inhibits autophagosome-lysosome fusion. As dopamine affects autophagy in neuronal cells, we investigated the possible association of DDC with autophagy in human hepatocytes and examined whether DDC mediates the relationship between DENV infection and autophagy. We performed DDC silencing/overexpression and evaluated autophagic markers upon induction of autophagy, or suppression of autophagosome-lysosome fusion. Our results showed that DDC favored the autophagic process, at least in part, through its biosynthetic function, while knockdown of DDC or inhibition of DDC enzymatic activity prevented autophagy completion. In turn, autophagy induction upregulated DDC, while autophagy reduction by chemical or genetic (ATG14L knockout) ways caused the opposite effect. This study also implicated DDC with the cellular energetic status, as DDC silencing reduced the oxidative phosphorylation activity of the cell. We also report that upon DDC silencing, the repressive effect of DENV on the completion of autophagy was enhanced, and the inhibition of autolysosome formation did not exert an additive effect on viral proliferation. These data unravel a novel role of DDC in the autophagic process and suggest that DENV downregulates DDC expression to inhibit the completion of autophagy, reinforcing the importance of this protein in viral infections.


Assuntos
Autofagia , Vírus da Dengue , Hepatócitos , Humanos , Vírus da Dengue/metabolismo , Dopa Descarboxilase/genética , Dopa Descarboxilase/metabolismo , Dopamina/metabolismo , Hepatócitos/patologia , Hepatócitos/virologia
2.
Curr Issues Mol Biol ; 45(12): 10179-10192, 2023 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-38132481

RESUMO

Oxidative stress is known to influence mRNA levels, translation, and proteolysis. The importance of oxidative stress has been demonstrated in several human diseases, including neurodegenerative disorders. L-Dopa decarboxylase (DDC) is the enzyme that converts L-Dopa to dopamine (DA). In spite of a large number of studies, little is known about the biological significance of the enzyme under physiological and pathological conditions. Here, we investigated the relationship between DDC expression and oxidative stress in human neural and non-neural cells. Oxidative stress was induced by treatment with H2O2. Our data indicated that mRNA and protein expression of DDC was enhanced or remained stable under conditions of ROS induction, despite degradation of total RNA and increased cytotoxicity and apoptosis. Moreover, DDC silencing caused an increase in the H2O2-induced cytotoxicity. The current study suggests that DDC is involved in the mechanisms of oxidative stress.

3.
Pharmaceuticals (Basel) ; 16(7)2023 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-37513957

RESUMO

Flaviviridae infections, such as those caused by hepatitis C (HCV) and dengue viruses (DENVs), represent global health risks. Infected people are in danger of developing chronic liver failure or hemorrhagic fever, both of which can be fatal if not treated. The tropical parasites Trypanosoma brucei and Trypanosoma cruzi cause enormous socioeconomic burdens in Sub-Saharan Africa and Latin America. Anti-HCV chemotherapy has severe adverse effects and is expensive, whereas dengue has no clinically authorized treatment. Antiparasitic medicines are often toxic and difficult to administer, and treatment failures are widely reported. There is an urgent need for new chemotherapies. Based on our previous research, we have undertaken structural modification of lead compound V with the goal of producing derivatives with both antiviral and trypanocidal activity. The novel spirocarbocyclic-substituted hydantoin analogs were designed, synthesized, and tested for antiviral activity against three HCV genotypes (1b, 3a, 4a), DENV, yellow fever virus (YFV), and two trypanosome species (T. brucei, T. cruzi). The optimization was successful and led to compounds with significant antiviral and trypanocidal activity and exceptional selectivity. Several modifications were made to further investigate the structure-activity relationships (SARs) and confirm the critical role of lipophilicity and conformational degrees of freedom.

4.
Med Sci (Basel) ; 11(2)2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37367740

RESUMO

Hypoxia is characterized as one of the main consequences of sepsis, which is recognized as the leading cause of death in intensive care unit (ICU) patients. In this study, we aimed to examine whether the expression levels of genes regulated under hypoxia could be utilized as novel biomarkers for sepsis prognosis in ICU patients. Whole blood expression levels of hypoxia-inducible factor-1α (HIF1A), interferon-stimulated gene 15 (ISG15), hexokinase 2 (HK2), lactate dehydrogenase (LDHA), heme oxygenase-1 (HMOX1), erythropoietin (EPO), and the vascular endothelial growth factor A (VEGFA) were measured on ICU admission in 46 critically ill, initially non-septic patients. The patients were subsequently divided into two groups, based on the development of sepsis and septic shock (n = 25) or lack thereof (n = 21). HMOX1 mRNA expression was increased in patients who developed sepsis/septic shock compared to the non-septic group (p < 0.0001). The ROC curve, multivariate logistic regression, and Kaplan-Meier analysis demonstrated that HMOX1 expression could be utilized for sepsis and septic shock development probability. Overall, our results indicate that HMOX1 mRNA levels have the potential to be a valuable predictive factor for the prognosis of sepsis and septic shock in ICU patients.


Assuntos
Sepse , Choque Séptico , Humanos , Choque Séptico/diagnóstico , Choque Séptico/genética , Prognóstico , Fator A de Crescimento do Endotélio Vascular , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Unidades de Terapia Intensiva , Sepse/diagnóstico , Sepse/genética
5.
Int J Mol Sci ; 24(9)2023 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-37176159

RESUMO

This study is an extension of current research into a novel class of synthetic antihypertensive drugs referred to as "bisartans", which are bis-alkylated imidazole derivatives bearing two symmetric anionic biphenyltetrazoles. Research to date indicates that bisartans are superior to commercially available hypertension drugs, since the former undergo stronger docking to angiotensin-converting enzyme 2 (ACE2). ACE2 is the key receptor involved in SARS-CoV-2 entry, thus initiating COVID-19 infection and in regulating levels of vasoactive peptides such as angiotensin II and beneficial heptapeptides A(1-7) and Alamandine in the renin-angiotensin system (RAS). In previous studies using in vivo rabbit-iliac arterial models, we showed that Na+ or K+ salts of selected Bisartans initiate a potent dose-response inhibition of vasoconstriction. Furthermore, computational studies revealed that bisartans undergo stable binding to the vital interfacial region between ACE2 and the SARS-CoV-2 "receptor binding domain" (i.e., the viral RBD). Thus, bisartan homologs are expected to interfere with SARS-CoV-2 infection and/or suppress disease expression in humans. The primary goal of this study was to investigate the role of tetrazole in binding and the network of amino acids of SARS-CoV-2 Spike RBD-ACE2 complex involved in interactions with sartans. This study would, furthermore, allow the expansion of the synthetic space to create a diverse suite of new bisartans in conjunction with detailed computational and in vitro antiviral studies. A critical role for tetrazole was uncovered in this study, shedding light on the vital importance of this group in the binding of sartans and bisartans to the ACE2/Spike complex. The in silico data predicting an interaction of tetrazole-containing sartans with ACE2 were experimentally validated by the results of surface plasmon resonance (SPR) analyses performed with a recombinant human ACE2 protein.


Assuntos
COVID-19 , Animais , Humanos , Coelhos , SARS-CoV-2/metabolismo , Anti-Hipertensivos/farmacologia , Anti-Hipertensivos/uso terapêutico , Anti-Hipertensivos/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Bloqueadores do Receptor Tipo 1 de Angiotensina II , Sítios de Ligação , Ligação Proteica
6.
Microorganisms ; 11(3)2023 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-36985119

RESUMO

Background: Chronic media with effusion (COME) and recurrent acute otitis media (RAOM) are closely related clinical entities that affect childhood. The aims of the study were to investigate the microbiological profile of otitis-prone children in the post-PCV7 era and, to examine the biofilm-forming ability in association with clinical history and outcome during a two-year post-operative follow-up. Methods: In this prospective study, pathogens from patients with COME and RAOM were isolated and studied in vitro for their biofilm-forming ability. The minimum inhibitory concentrations (MIC) of both the planktonic and the sessile forms were compared. The outcome of the therapeutic method used in each case and patient history were correlated with the pathogens and their ability to form biofilms. Results: Haemophilus influenzae was the leading pathogen (35% in COME and 40% in RAOM), and Streptococcus pneumoniae ranked second (12% in COME and 24% in RAOM). Polymicrobial infections were identified in 5% of COME and 19% of RAOM cases. Of the isolated otopathogens, 94% were positive for biofilm formation. Conclusions: This is the first Greek research studying biofilm formation in complex otitis media-prone children population in the post-PCV7 era. High rates of polymicrobial infections, along with treatment failure in biofilms, may explain the lack of antimicrobial efficacy in otitis-prone children.

7.
Viruses ; 14(12)2022 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-36560772

RESUMO

Chronic hepatitis C virus (HCV) infections are a worldwide medical problem responsible for diverse types of liver diseases. The NS5B polymerase enzyme has become a very interesting target for the development of anti-HCV drugs owing to its fundamental role in viral replication. Here we report the synthesis of a novel series of 1-substituted phenyl-4(1H)-quinazolinone and 2-methyl-1-substituted phenyl-4(1H)-quinazolinone derivatives and evaluate their activity against HCV in HCV subgenomic replicon assays. The biological data revealed that compound 11a showed the highest activity against HCV GT1b at a micromolar concentration (EC50 = 0.984 µM) followed by compound 11b (EC50 = 1.38 µM). Both compounds 11a and 11b had high selectivity indices (SI = CC50/EC50), 160.71 and 71.75, respectively, which make them very interesting candidates for further development of more potent and selective anti-HCV agents.


Assuntos
Antivirais , Inibidores Enzimáticos , Hepacivirus , Humanos , Antivirais/farmacologia , Inibidores Enzimáticos/farmacologia , Hepacivirus/efeitos dos fármacos , Hepatite C Crônica , Quinazolinonas/farmacologia , Relação Estrutura-Atividade , Proteínas não Estruturais Virais , Replicação Viral
8.
Microorganisms ; 10(7)2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35889149

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), a novel virus that belongs to the Coronoviridae family, emerged in December 2019, causing the COVID-19 pandemic in March 2020. Unlike previous SARS and Middle East respiratory syndrome (MERS) outbreaks, this virus has a higher transmissibility rate, albeit a lower case fatality rate, which results in accumulation of a significant number of mutations and a faster evolution rate. Genomic studies on the mutation rate of the virus, as well as the identification of mutations that prevail and their impact on disease severity, are of great importance for pandemic surveillance and vaccine and drug development. Here, we aim to identify mutations on the SARS-CoV-2 viral genome and their effect on the proteins they are located in, in Greek patients infected in the first wave of the pandemic. To this end, we perform SARS-CoV-2 amplicon-based NGS sequencing on nasopharyngeal swab samples from Greek patients and bioinformatic analysis of the results. Although SARS-CoV-2 is considered genetically stable, we discover a variety of mutations on the viral genome. In detail, 18 mutations are detected in total on 10 SARS-CoV-2 isolates. The mutations are located on ORF1ab, S protein, M protein, ORF3a and ORF7a. Sixteen are also detected in patients from other regions around the world, and two are identified for the first time in the present study. Most of them result in amino acid substitutions. These substitutions are analyzed using computational tools, and the results indicate minor or major impact on the proteins' structural stability, which could probably affect viral transmissibility and pathogenesis. The correlation of these variations with the viral load levels is examined, and their implication for disease severity and the biology of the virus are discussed.

9.
Pharmaceuticals (Basel) ; 15(5)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35631457

RESUMO

In today's global plan to completely eradicate hepatitis C virus (HCV), the essential list of medications used for HCV treatment are direct-acting antivirals (DAAs), as interferon-sparing regimens have become the standard-of-care (SOC) treatment. HCV nonstructural protein 5A (NS5A) inhibitors are a very common component of these regimens. Food and Drug Administration (FDA)-approved NS5A inhibitors, although very potent, do not have the same potency against all eight genotypes of HCV. Therefore, this study aims to synthesize NS5A inhibitor analogues with high potency pan-genotypic activity and high metabolic stability. Starting from an NS5A inhibitor scaffold previously identified by our research group, we made several modifications. Two series of compounds were created to test the effect of changing the length and spatial conformation (para-para vs. meta-meta-positioned bis-imidazole-proline-carbamate), replacing amide groups in the linker with imidazole groups, as well as different end-cap compositions and sizes. The frontrunner inhibits genotype 1b (Con1) replicon, with an EC50 value in the picomolar range, and showed high genotypic coverage with nanomolar range EC50 values against four more genotypes. This together with its high metabolic stability (t½ > 120 min) makes it a potential preclinical candidate.

10.
Viruses ; 14(4)2022 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-35458488

RESUMO

In-depth understanding of the immune response provoked by SARS-CoV-2 infection is necessary, as there is a great risk of reinfection and a difficulty in achieving herd immunity due to a decline in both antibody concentration and avidity. Avidity testing, however, could overcome variability in the immune response associated with sex or clinical symptoms, and thus differentiate between recent and past infections. In this context, here, we analyzed SARS-CoV-2 antibody kinetics and avidity in Greek hospitalized (26%) and non-hospitalized (74%) COVID-19 patients (N = 71) in the course of up to 15 months after their infection to improve the accuracy of the serological diagnosis in dating the onset of the infection. The results showed that IgG-S1 levels decline significantly at four months (p = 0.0239) in both groups of patients and are higher in hospitalized ones (up to 2.1-fold, p < 0.001). Additionally, hospitalized patients' titers drop greatly and are equalized to non-hospitalized ones only at a time-point of twelve to fifteen months. Antibody levels of women in total remain more stable months after infection, compared to men. Furthermore, we examined the differential maturation of IgG avidity after SARS-CoV-2 infection, showing an incomplete maturation of avidity that results in a plateau at four months after infection. We also defined 38.2% avidity (sensitivity: 58.9%, specificity: 90.91%) as an appropriate "cut-off" that could be used to determine the stage of infection before avidity reaches a plateau.


Assuntos
COVID-19 , Anticorpos Antivirais , Formação de Anticorpos , COVID-19/diagnóstico , Feminino , Grécia , Humanos , Imunoglobulina G , Cinética , Masculino , SARS-CoV-2
11.
Viruses ; 14(3)2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-35336971

RESUMO

Previously, the association between the catecholamine biosynthetic enzyme L-Dopa decarboxylase (DDC) and Dengue virus (DV) replication was demonstrated in liver cells and was found to be mediated at least by the interaction between DDC and phosphoinositide 3-kinase (PI3K). Here, we show that biogenic amines production and uptake impede DV replication in hepatocytes and monocytes, while the virus reduces catecholamine biosynthesis, metabolism, and transport. To examine how catecholamine biosynthesis/metabolism influences DV, first, we verified the role of DDC by altering DDC expression. DDC silencing enhanced virus replication, but not translation, attenuated the negative effect of DDC substrates on the virus and reduced the infection related cell death. Then, the role of the downstream steps of the catecholamine biosynthesis/metabolism was analyzed by chemical inhibition of the respective enzymes, application of their substrates and/or their products; moreover, reserpine, the inhibitor of the vesicular monoamine transporter 2 (VMAT2), was used to examine the role of uptake/storage of catecholamines on DV. Apart from the role of each enzyme/transporter, these studies revealed that the dopamine uptake, and not the dopamine-signaling, is responsible for the negative effect on DV. Accordingly, all treatments expected to enhance the accumulation of catecholamines in the cell cytosol suppressed DV replication. This was verified by the use of chemical inducers of catecholamine biosynthesis. Last, the cellular redox alterations due to catecholamine oxidation were not related with the inhibition of DV replication. In turn, DV apart from its negative impact on DDC, inhibits tyrosine hydroxylase, dopamine beta-hydroxylase, monoamine oxidase, and VMAT2 expression.


Assuntos
Dengue , Dopamina , Catecolaminas/metabolismo , Dopamina/metabolismo , Hepatócitos/metabolismo , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Replicação Viral
12.
Int J Mol Sci ; 24(1)2022 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-36613449

RESUMO

Olive oil phenols (OOPs) are associated with the prevention of many human cancers. Some of these have been shown to inhibit cell proliferation and induce apoptosis. However, no systematic comparative study exists for all the investigated compounds under the same conditions, due to difficulties in their isolation or synthesis. Herein are presented innovative methods for large-scale selective extraction of six major secoiridoids from olive oil or leaves enabling their detailed investigation. The cytotoxic/antiproliferative bioactivity of these six compounds was evaluated on sixteen human cancer cell lines originating from eight different tissues. Cell viability with half-maximal effective concentrations (EC50) was evaluated after 72 h treatments. Antiproliferative and pro-apoptotic effects were also assessed for the most bioactive compounds (EC50 ≤ 50 µM). Oleocanthal (1) showed the strongest antiproliferative/cytotoxic activity in most cancer cell lines (EC50: 9−20 µM). The relative effectiveness of the six OOPs was: oleocanthal (1) > oleuropein aglycone (3a,b) > ligstroside aglycone (4a,b) > oleacein (2) > oleomissional (6a,b,c) > oleocanthalic acid (7). This is the first detailed study comparing the bioactivity of six OOPs in such a wide array of cancer cell lines, providing a reference for their relative antiproliferative/cytotoxic effect in the investigated cancers.


Assuntos
Antineoplásicos , Neoplasias , Olea , Humanos , Iridoides/farmacologia , Azeite de Oliva/farmacologia , Antineoplásicos/farmacologia , Neoplasias/tratamento farmacológico , Linhagem Celular
13.
Eur J Med Chem ; 229: 114034, 2022 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-34959173

RESUMO

Herein, we report the discovery of several NS5A inhibitors with potency against HCV genotype 1b in the picomolar range. Compounds (15, 33) were of extremely high potency against HCV genotype 1b (EC50 ≈ 1 pM), improved activity against genotype 3a (GT 3a) and good metabolic stability. We studied the impact of changing the cap conformation relative to the diphenylethyne core and/or compound symmetry on both potency and metabolic stability. The analogs obtained exhibited improved potency against HCV genotypes 1a, 1b, 3a and 4a compared to the clinically approved candidate daclatasvir with EC50 values in the low picomolar range and SI50s > 7 orders of magnitude. Compound 15, a symmetrically m-, m'-substituted diphenyl ethyne analog, was 150-fold more potent than daclatasvir against GT 3a, while compound 33, an asymmetrically m-, p-substituted diphenyl ethyne analog, was 35-fold more potent than daclatasvir against GT 3a. In addition, compound 15 exhibited a higher resistance barrier than daclatasvir against genotype 1b.


Assuntos
Acetileno/análogos & derivados , Antivirais/química , Desenho de Fármacos , Hepacivirus/genética , RNA Polimerase Dependente de RNA/antagonistas & inibidores , Proteínas não Estruturais Virais/antagonistas & inibidores , Acetileno/química , Antivirais/metabolismo , Antivirais/farmacologia , Sítios de Ligação , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Farmacorresistência Viral/efeitos dos fármacos , Genótipo , Hepacivirus/metabolismo , Humanos , Conformação Molecular , Simulação de Acoplamento Molecular , RNA Polimerase Dependente de RNA/metabolismo , Relação Estrutura-Atividade , Proteínas não Estruturais Virais/metabolismo , Replicação Viral/efeitos dos fármacos
14.
Cells ; 12(1)2022 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-36611805

RESUMO

The SARS-CoV-2 infection was previously associated with the expression of the dopamine biosynthetic enzyme L-Dopa decarboxylase (DDC). Specifically, a negative correlation was detected between DDC mRNA and SARS-CoV-2 RNA levels in in vitro infected epithelial cells and the nasopharyngeal tissue of COVID-19 patients with mild/no symptoms. However, DDC, among other genes related to both DDC expression and SARS-CoV-2-infection (ACE2, dACE2, EPO), was upregulated in these patients, possibly attributed to an orchestrated host antiviral response. Herein, by comparing DDC expression in the nasopharyngeal swab samples of severe/critical to mild COVID-19 cases, we showed a 20 mean-fold reduction, highlighting the importance of the expression of this gene as a potential marker of COVID-19 severity. Moreover, we identified an association of SARS-CoV-2 infection with the expression of key catecholamine biosynthesis/metabolism-related genes, in whole blood samples from hospitalized patients and in cultured cells. Specifically, viral infection downregulated the biosynthetic part of the dopamine pathway (reduction in DDC expression up to 7.5 mean-fold), while enhanced the catabolizing part (increase in monoamine oxidases A and B expression up to 15 and 10 mean-fold, respectively) in vivo, irrespectively of the presence of comorbidities. In accordance, dopamine levels in the sera of severe cases were reduced (up to 3.8 mean-fold). Additionally, a moderate positive correlation between DDC and MAOA mRNA levels (r = 0.527, p < 00001) in the blood was identified upon SARS-CoV-2-infection. These observations were consistent to the gene expression data from SARS-CoV-2-infected Vero E6 and A549 epithelial cells. Furthermore, L-Dopa or dopamine treatment of infected cells attenuated the virus-derived cytopathic effect by 55% and 59%, respectively. The SARS-CoV-2 mediated suppression of dopamine biosynthesis in cell culture was, at least in part, attributed to hypoxia-like conditions triggered by viral infection. These findings suggest that L-Dopa/dopamine intake may have a preventive or therapeutic value for COVID-19 patients.


Assuntos
COVID-19 , Humanos , SARS-CoV-2/metabolismo , Catecolaminas , Dopamina , Levodopa/metabolismo , RNA Viral/metabolismo , Vias Biossintéticas , RNA Mensageiro/metabolismo
15.
Viruses ; 13(11)2021 10 23.
Artigo em Inglês | MEDLINE | ID: mdl-34834946

RESUMO

A bidirectional negative relationship between Hepatitis C virus (HCV) replication and gene expression of the catecholamine biosynthetic enzyme L-Dopa decarboxylase (DDC) was previously shown in the liver and attributed at least to an association of DDC with phosphatidylinositol 3-kinase (PI3K). Here, we report that the biosynthesis and uptake of catecholamines restrict HCV replication in hepatocytes, while HCV has developed ways to reduce catecholamine production. By employing gene silencing, chemical inhibition or induction of the catecholamine biosynthetic and metabolic enzymes and transporters, and by applying the substrates or the products of the respective enzymes, we unravel the role of the different steps of the pathway in viral infection. We also provide evidence that the effect of catecholamines on HCV is strongly related with oxidative stress that is generated by their autoxidation in the cytosol, while antioxidants or treatments that lower cytosolic catecholamine levels positively affect the virus. To counteract the effect of catecholamines, HCV, apart from the already reported effects on DDC, causes the down-regulation of tyrosine hydroxylase that encodes the rate-limiting enzyme of catecholamine biosynthesis and suppresses dopamine beta-hydroxylase mRNA and protein amounts, while increasing the catecholamine degradation enzyme monoamine oxidase. Moreover, the NS4B viral protein is implicated in the effect of HCV on the ratio of the ~50 kDa DDC monomer and a ~120 kDa DDC complex, while the NS5A protein has a negative effect on total DDC protein levels.


Assuntos
Vias Biossintéticas , Catecolaminas/biossíntese , Hepacivirus/fisiologia , Replicação Viral , Descarboxilases de Aminoácido-L-Aromático/metabolismo , Linhagem Celular , Dopamina beta-Hidroxilase/metabolismo , Hepatite C/metabolismo , Hepatócitos/metabolismo , Humanos , Fígado/metabolismo , Monoaminoxidase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , RNA Mensageiro/metabolismo , Tirosina 3-Mono-Oxigenase/metabolismo
16.
Int J Mol Sci ; 22(18)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34576169

RESUMO

Autotaxin (ATX; ENPP2) is a secreted lysophospholipase D catalyzing the extracellular production of lysophosphatidic acid (LPA), a pleiotropic signaling phospholipid. Genetic and pharmacologic studies have previously established a pathologic role for ATX and LPA signaling in pulmonary injury, inflammation, and fibrosis. Here, increased ENPP2 mRNA levels were detected in immune cells from nasopharyngeal swab samples of COVID-19 patients, and increased ATX serum levels were found in severe COVID-19 patients. ATX serum levels correlated with the corresponding increased serum levels of IL-6 and endothelial damage biomarkers, suggesting an interplay of the ATX/LPA axis with hyperinflammation and the associated vascular dysfunction in COVID-19. Accordingly, dexamethasone (Dex) treatment of mechanically ventilated patients reduced ATX levels, as shown in two independent cohorts, indicating that the therapeutic benefits of Dex include the suppression of ATX. Moreover, large scale analysis of multiple single cell RNA sequencing datasets revealed the expression landscape of ENPP2 in COVID-19 and further suggested a role for ATX in the homeostasis of dendritic cells, which exhibit both numerical and functional deficits in COVID-19. Therefore, ATX has likely a multifunctional role in COVID-19 pathogenesis, suggesting that its pharmacological targeting might represent an additional therapeutic option, both during and after hospitalization.


Assuntos
COVID-19/diagnóstico , Células Dendríticas/imunologia , Inibidores de Fosfodiesterase/uso terapêutico , Diester Fosfórico Hidrolases/sangue , SARS-CoV-2/imunologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/sangue , COVID-19/sangue , COVID-19/imunologia , COVID-19/terapia , Estudos de Coortes , Conjuntos de Dados como Assunto , Células Dendríticas/efeitos dos fármacos , Dexametasona/farmacologia , Dexametasona/uso terapêutico , Endotélio Vascular/imunologia , Endotélio Vascular/patologia , Feminino , Humanos , Interleucina-6/sangue , Interleucina-6/metabolismo , Masculino , Pessoa de Meia-Idade , Inibidores de Fosfodiesterase/farmacologia , Diester Fosfórico Hidrolases/metabolismo , RNA-Seq , Respiração Artificial , SARS-CoV-2/isolamento & purificação , Índice de Gravidade de Doença , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Análise de Célula Única
17.
Microorganisms ; 9(8)2021 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-34442806

RESUMO

Anti-SARS-CoV-2 spike RBD (receptor-binding domain) IgG antibody levels were monitored in 1643 volunteer healthcare workers of Eginition, Evangelismos, and Konstantopoulio General Hospitals (Athens, Greece), who underwent vaccination with two doses of COVID-19 BNT162b2 mRNA vaccine (Pfizer) and had no history of SARS-CoV-2 infection. Venous blood was collected 20-30 days after the second vaccine dose and anti-RBD IgG levels were determined using CMIA SARS-CoV-2 IgG II Quant (Abbott) on ARCHITECT i System or ADVIA Centaur SARS-CoV-2 IgG (Siemens) on Centaur XP platform. From the total population of 1643 vaccinees (533 M/1110 F; median age = 49; interquartile range-IQR = 40-56), 1636 (99.6%) had anti-SARS-CoV-2 IgG titers above the positivity threshold of the assay used. One-Way ANOVA Kruskal-Wallis H test showed a statistically significant difference in the median of antibody titers between the different age groups (p < 0.0001). Consistently, Spearman's correlation coefficient (r) for IgGs and age as continuous variables was -0.2380 (p = 1.98 × 10-17). Moreover, antibody titers were slightly higher by 1.2-mean fold (p = 3 × 10-6) in the total female population of the three hospitals (median = 1594; IQR = 875-2584) as compared to males (median = 1292; IQR = 671.9-2188). The present study supports that BNT162b2 vaccine is particularly effective in producing high anti-SARS-CoV-2 IgG levels in healthy individuals, and this humoral response is age- and gender-dependent.

18.
PLoS One ; 16(6): e0253458, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34185793

RESUMO

L-Dopa decarboxylase (DDC) is the most significantly co-expressed gene with ACE2, which encodes for the SARS-CoV-2 receptor angiotensin-converting enzyme 2 and the interferon-inducible truncated isoform dACE2. Our group previously showed the importance of DDC in viral infections. We hereby aimed to investigate DDC expression in COVID-19 patients and cultured SARS-CoV-2-infected cells, also in association with ACE2 and dACE2. We concurrently evaluated the expression of the viral infection- and interferon-stimulated gene ISG56 and the immune-modulatory, hypoxia-regulated gene EPO. Viral load and mRNA levels of DDC, ACE2, dACE2, ISG56 and EPO were quantified by RT-qPCR in nasopharyngeal swab samples from COVID-19 patients, showing no or mild symptoms, and from non-infected individuals. Samples from influenza-infected patients were analyzed in comparison. SARS-CoV-2-mediated effects in host gene expression were validated in cultured virus-permissive epithelial cells. We found substantially higher gene expression of DDC in COVID-19 patients (7.6-fold; p = 1.2e-13) but not in influenza-infected ones, compared to non-infected subjects. dACE2 was more elevated (2.9-fold; p = 1.02e-16) than ACE2 (1.7-fold; p = 0.0005) in SARS-CoV-2-infected individuals. ISG56 (2.5-fold; p = 3.01e-6) and EPO (2.6-fold; p = 2.1e-13) were also increased. Detected differences were not attributed to enrichment of specific cell populations in nasopharyngeal tissue. While SARS-CoV-2 virus load was positively associated with ACE2 expression (r≥0.8, p<0.001), it negatively correlated with DDC, dACE2 (r≤-0.7, p<0.001) and EPO (r≤-0.5, p<0.05). Moreover, a statistically significant correlation between DDC and dACE2 expression was observed in nasopharyngeal swab and whole blood samples of both COVID-19 and non-infected individuals (r≥0.7). In VeroE6 cells, SARS-CoV-2 negatively affected DDC, ACE2, dACE2 and EPO mRNA levels, and induced cell death, while ISG56 was enhanced at early hours post-infection. Thus, the regulation of DDC, dACE2 and EPO expression in the SARS-CoV-2-infected nasopharyngeal tissue is possibly related with an orchestrated antiviral response of the infected host as the virus suppresses these genes to favor its propagation.


Assuntos
Enzima de Conversão de Angiotensina 2/metabolismo , COVID-19/patologia , Dopa Descarboxilase/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Adulto , Idoso , Enzima de Conversão de Angiotensina 2/genética , Área Sob a Curva , Descarboxilases de Aminoácido-L-Aromático , COVID-19/virologia , Dopa Descarboxilase/genética , Regulação para Baixo , Células Epiteliais/citologia , Células Epiteliais/metabolismo , Eritropoetina/genética , Eritropoetina/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Nasofaringe/metabolismo , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Curva ROC , SARS-CoV-2/genética , SARS-CoV-2/isolamento & purificação , Regulação para Cima , Carga Viral
19.
Pharmaceuticals (Basel) ; 14(4)2021 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-33806139

RESUMO

Hepatitis C virus (HCV) is an international challenge. Since the discovery of NS5A direct-acting antivirals, researchers turned their attention to pursue novel NS5A inhibitors with optimized design and structure. Herein we explore highly potent hepatitis C virus (HCV) NS5A inhibitors; the novel analogs share a common symmetrical prolinamide 2,7-diaminofluorene scaffold. Modification of the 2,7-diaminofluorene backbone included the use of (S)-prolinamide or its isostere (S,R)-piperidine-3-caboxamide, both bearing different amino acid residues with terminal carbamate groups. Compound 26 exhibited potent inhibitory activity against HCV genotype (GT) 1b (effective concentration (EC50) = 36 pM and a selectivity index of >2.78 × 106). Compound 26 showed high selectivity on GT 1b versus GT 4a. Interestingly, it showed a significant antiviral effect against GT 3a (EC50 = 1.2 nM). The structure-activity relationship (SAR) analysis revealed that picomolar inhibitory activity was attained with the use of S-prolinamide capped with R- isoleucine or R-phenylglycine residues bearing a terminal alkyl carbamate group.

20.
Int J Mol Sci ; 21(18)2020 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-32972019

RESUMO

Hepatitis C virus (HCV) genome translation is initiated via an internal ribosome entry site (IRES) embedded in the 5'-untranslated region (5'UTR). We have earlier shown that the conserved RNA stem-loops (SL) SL47 and SL87 of the HCV core-encoding region are important for viral genome translation in cell culture and in vivo. Moreover, we have reported that an open reading frame overlapping the core gene in the +1 frame (core+1 ORF) encodes alternative translation products, including a protein initiated at the internal AUG codons 85/87 of this frame (nt 597-599 and 603-605), downstream of SL87, which is designated core+1/Short (core+1/S). Here, we provide evidence for SL47 and SL87 possessing a novel cis-acting element that directs the internal translation initiation of core+1/S. Firstly, using a bicistronic dual luciferase reporter system and RNA-transfection experiments, we found that nucleotides 344-596 of the HCV genotype-1a and -2a genomes support translation initiation at the core+1 frame AUG codons 85/87, when present in the sense but not the opposite orientation. Secondly, site-directed mutagenesis combined with an analysis of ribosome-HCV RNA association elucidated that SL47 and SL87 are essential for this alternative translation mechanism. Finally, experiments using cells transfected with JFH1 replicons or infected with virus-like particles showed that core+1/S expression is independent from the 5'UTR IRES and does not utilize the polyprotein initiation codon, but it requires intact SL47 and SL87 structures. Thus, SL47 and SL87, apart from their role in viral polyprotein translation, are necessary elements for mediating the internal translation initiation of the alternative core+1/S ORF.


Assuntos
Hepacivirus/metabolismo , Conformação de Ácido Nucleico , Fases de Leitura Aberta , Iniciação Traducional da Cadeia Peptídica , RNA Viral/metabolismo , Proteínas do Core Viral/biossíntese , Linhagem Celular Tumoral , Códon de Iniciação , Hepacivirus/genética , Humanos , RNA Viral/genética , Proteínas do Core Viral/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...