Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Bioengineering (Basel) ; 10(6)2023 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-37370587

RESUMO

Microencapsulation of extra virgin olive oil has been taken into consideration. Initially, emulsions were prepared using extra virgin olive oil and aqueous solutions of different proportions of maltodextrin (MD) having dextrose equivalent (DE) 19 and whey protein isolates (WPI), such as 100% MD, 100% WPI, 25% MD + 75% WPI, 50% MD + 50% WPI and 75% MD + 25% WPI. Subsequently, emulsions were used for dehydration by either spray-drying (SD) or freeze-drying (FD) to produce olive oil microcapsules. Emulsion stability, viscosity and droplet size influenced the characteristics of the microcapsules. The highest encapsulation efficiency was achieved using 50% MD + 50% WPI in the emulsions with subsequent SD. The moisture content of the microcapsules increased with increasing proportions of MD. The size of the microcapsules increased with increasing proportions of WPI. The bulk density and tapped density were reduced with higher proportions of MD in the microcapsules. Furthermore, microcapsules with a higher proportion of MD exhibited poor flowability and high cohesiveness. Microcapsules from the higher proportion MD emulsions, followed by SD were spherical with a smooth surface; however, microcapsules with dent structures were produced from 100% WPI in the emulsions with subsequent SD. Microcapsules, produced from emulsions with a higher proportion of WPI, followed by FD were flat flakes and had irregular surfaces.

2.
Antioxidants (Basel) ; 12(6)2023 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-37371905

RESUMO

Olive pomace is a by-product of olive oil production that is toxic to the environment. The purpose of this study was to evaluate the methods of olive pomace valorization through the implementation of novel technology, the so-called microwave-assisted extraction process. To determine the total polyphenol content (TPC) and antioxidant activity (AA), polyphenol extraction using MAE was performed. Response surface methodology was used to determine the best extraction conditions, whereby the effects of three factors, solid ratio (g/50 mL), time (s), and power (W), were measured. The ferric reducing antioxidant power (FRAP) method was used to assess AA, whereas the spectrophotometric Folin-Ciocalteu (FC) method was used to determine TPC. The highest TPC of 15.30 mg of gallic acid equivalents per gram of dried weight (mg GAE/gdw) was generated after 105 s at 450 W, with a solid concentration of 1 g/50 mL, while the maximum AA was 10 mg of ascorbic acid equivalents per gram of dried weight (mg AAE/gdw). Numerical optimization revealed that 800 W, 180 s, and 1 g/50 mL were the best conditions for obtaining maximum TPC and AA.

3.
Bioengineering (Basel) ; 7(1)2019 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-31905687

RESUMO

Enzymatic hydrolysis of soybean milk proteins with cysteine protease papain was performed in an advanced bioreactor, operated with batch mode. In soybean milk protein hydrolysis reaction, enzyme and substrate ratio and reaction temperature were varied, ranging from 0.029:100-0.457:100 and 30-60 °C, respectively. The degree of hydrolysis of soybean milk proteins was increased with increase of enzyme and substrate (soybean milk protein) ratio. However, the degree of hydrolysis was increased due to change of reaction temperature from 30 °C to 60 °C with enzyme and substrate ratio 0.229:100 and was reduced when hydrolysis reaction was performed with enzyme and substrate ratio 0.11:100 at hydrolysis temperature 60 °C. Antioxidant capacity of enzyme-treated milk had a similar trend with degree of hydrolysis. In a later exercise, a membrane bioreactor was adopted for continuous production of antioxidant and antibacterial peptides from soybean milk. The membrane bioreactor was operated for 12 h with constant feeding. Ceramic-made tubular membrane with a pore size 20 nm was used. Application of static turbulence promoter in a membrane separation process was investigated and its positive effects, with respect to higher permeate flux and lower energy consumption in filtration process, were proven. Antioxidant capacity and antibacterial activity against Bacillus cereus of enzyme-hydrolyzed milk and permeate from membrane were confirmed.

4.
Medicina (Kaunas) ; 54(6)2018 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-30513975

RESUMO

Lactose-based prebiotics are synthesized by enzymatic- or microbial- biotransformation of lactose and have unique functional values. In this comprehensive review article, the biochemical mechanisms of controlling osteoporosis, blood-lipid, and glucose levels by lactose-based prebiotics and symbiosis with probiotics are reported along with the results of clinical investigations. Interaction between lactose-based prebiotics and probiotics reduces osteoporosis by (a) transforming insoluble inorganic salts to soluble and increasing their absorption to gut wall; (b) maintaining and protecting mineral absorption surface in the intestine; (c) increasing the expression of calcium-binding proteins in the gut wall; (d) remodeling osteoclasts and osteoblasts formation; (e) releasing bone modulating factors; and (f) degrading mineral complexing phytic acid. Lactose-based prebiotics with probiotics control lipid level in the bloodstream and tissue by (a) suppressing the expressions of lipogenic- genes and enzymes; (b) oxidizing fatty acids in muscle, liver, and adipose tissue; (c) binding cholesterol with cell membrane of probiotics and subsequent assimilation by probiotics; (d) enzymatic-transformations of bile acids; and (e) converting cholesterol to coprostanol and its defecation. Symbiosis of lactose-based prebiotics with probiotics affect plasma glucose level by (a) increasing the synthesis of gut hormones plasma peptide-YY, glucagon-like peptide-1 and glucagon-like peptide-2 from entero-endocrine L-cells; (b) altering glucose assimilation and metabolism; (c) suppressing systematic inflammation; (d) reducing oxidative stress; and (e) producing amino acids. Clinical investigations show that lactose-based prebiotic galacto-oligosaccharide improves mineral absorption and reduces hyperlipidemia. Another lactose-based prebiotic, lactulose, improves mineral absorption, and reduces hyperlipidemia and hyperglycemia. It is expected that this review article will be of benefit to food technologists and medical practitioners.


Assuntos
Hiperglicemia/dietoterapia , Hiperlipidemias/dietoterapia , Lactose/administração & dosagem , Osteoporose/dietoterapia , Prebióticos/administração & dosagem , Probióticos/uso terapêutico , Adolescente , Adulto , Fármacos Gastrointestinais/uso terapêutico , Microbioma Gastrointestinal/fisiologia , Humanos , Hiperglicemia/metabolismo , Hiperlipidemias/metabolismo , Lactose/efeitos adversos , Lactulose/uso terapêutico , Masculino , Pessoa de Meia-Idade , Osteoporose/metabolismo , Prebióticos/efeitos adversos , Probióticos/efeitos adversos , Adulto Jovem
5.
Medicina (Kaunas) ; 54(2)2018 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-30344249

RESUMO

Lactose-derived prebiotics provide wide ranges of gastrointestinal comforts. In this review article, the probable biochemical mechanisms through which lactose-derived prebiotics offer positive gastrointestinal health are reported along with the up-to-date results of clinical investigations; this might be the first review article of its kind, to the best of our knowledge. Lactose-derived prebiotics have unique biological and functional values, and they are confirmed as 'safe' by the Food and Drug Administration federal agency. Medical practitioners frequently recommend them as therapeutics as a pure form or combined with dairy-based products (yoghurt, milk and infant formulas) or fruit juices. The biological activities of lactose-derived prebiotics are expressed in the presence of gut microflora, mainly probiotics (Lactobacillus spp. in the small intestine and Bifidobacterium spp. in the large intestine). Clinical investigations reveal that galacto-oligosaccharide reduces the risks of several types of diarrhea (traveler's diarrhea, osmotic diarrhea and Clostridium difficile associated relapsing diarrhea). Lactulose and lactosucrose prevent inflammatory bowel diseases (Crohn's disease and ulcerative colitis). Lactulose and lactitol reduce the risk of hepatic encephalopathy. Furthermore, lactulose, galacto-oligosaccharide and lactitol prevent constipation in individuals of all ages. It is expected that the present review article will receive great attention from medical practitioners and food technologists.


Assuntos
Gastroenteropatias/prevenção & controle , Trato Gastrointestinal , Lactose/química , Prebióticos , Probióticos/uso terapêutico , Catárticos/uso terapêutico , Neoplasias do Colo/prevenção & controle , Constipação Intestinal/prevenção & controle , Diarreia/microbiologia , Diarreia/terapia , Galactosídeos/uso terapêutico , Trato Gastrointestinal/efeitos dos fármacos , Trato Gastrointestinal/microbiologia , Encefalopatia Hepática/prevenção & controle , Humanos , Doenças Inflamatórias Intestinais/prevenção & controle , Lactulose/uso terapêutico , Oligossacarídeos/uso terapêutico , Probióticos/farmacologia , Álcoois Açúcares/uso terapêutico , Trissacarídeos/uso terapêutico
6.
Food Sci Technol Int ; 22(8): 677-687, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27056596

RESUMO

The present work studies the use of nanofiltration for the production of red wine concentrate with low alcohol content. Factorial design was applied to measure the influences of transmembrane pressure (10-20 bar) and temperature (20-40 ℃) on the retention of valuable components such as anthocyanins and resveratrol, and on the nanofiltration membrane performance. The highest retention of anthocyanin and resveratrol was achieved at low temperature (20 ℃), while the high transmembrane pressure (20 bar) was found to increase the permeate flux considerably. The experiments demonstrated that nanofiltration appears as a valid technique for the production of low alcohol content red wine concentrate. Reduction of volume by a factor of 4, leads to 2.5-3 times more anthocyanins and resveratrol in the wine concentrates. The final new wine products - obtained by using various forms of reconstitution of the concentrated wine - had low alcohol content (4-6 % by volume) and their sensory attributes were similar to those of the original wine.


Assuntos
Antocianinas/análise , Manipulação de Alimentos , Nanotecnologia , Estilbenos/análise , Vinho/análise , Álcoois/análise , Filtração , Humanos , Modelos Teóricos , Resveratrol , Paladar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...