Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Life Sci ; 72(16): 1871-82, 2003 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-12586224

RESUMO

Although the role of acetylcholine (Ach) in hepatic glucose metabolism is well elucidated, it is still unclear if it influences gluconeogenesis, glycogenolysis and high-energy phosphate metabolism, and if it does what the mechanisms of this influence are. Therefore, using isolated perfused rat liver as a model, we have studied the effect of Ach on oxygen consumption, synthesis of glucose from lactate and pyruvate, glycogen formation, mitochondrial oxidative phosphorylation and ATP-synthesis. We have established that effects of Ach on oxygen consumption depend on its concentration. When used at a concentration of 10(-7) M, Ach exerts maximum stimulatory effect, while its infusion at 10(-6) M causes a decrease of oxygen consumption by the liver. Moreover, when used at a concentration of 10(-6) M or 10(-7) M, Ach increases rates of glucose production from the gluconeogenic substrates lactate and pyruvate, leading to enhanced glycogen content in perfused liver. It was also shown that Ach possesses a stimulating effect on alanine and aspartate aminotransferases. As detected by 31P NMR spectroscopy, continuous liver perfusion with pyruvate and lactate in the presence of Ach leads to a significant decrease of ATP level, implying enhanced energy requirements for gluconeogenesis under these conditions. Elimination of the described effects of Ach by atropine, the antagonist of muscarinic receptors, and identification of the type 3 muscarinic receptors (m3) in isolated hepatocytes as well as in whole liver, imply that Ach may exert its effect on liver metabolism through m3 receptors.


Assuntos
Acetilcolina/farmacologia , Hepatócitos/metabolismo , Fígado/efeitos dos fármacos , Receptores Muscarínicos/metabolismo , Trifosfato de Adenosina/biossíntese , Animais , Atropina/farmacologia , Relação Dose-Resposta a Droga , Gluconeogênese/fisiologia , Glucose/biossíntese , Glicogênio/biossíntese , Hepatócitos/efeitos dos fármacos , Técnicas In Vitro , Fígado/metabolismo , Espectroscopia de Ressonância Magnética , Masculino , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Antagonistas Muscarínicos/farmacologia , Fosforilação Oxidativa , Consumo de Oxigênio , Perfusão , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores Muscarínicos/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa
2.
J Biol Chem ; 276(24): 20817-20, 2001 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-11313333

RESUMO

Increasing emissions of heavy metals such as cadmium, mercury, and arsenic into the environment pose an acute problem for all organisms. Considerations of the biochemical basis of heavy metal detoxification in animals have focused exclusively on two classes of peptides, the thiol tripeptide, glutathione (GSH, gamma-Glu-Cys-Gly), and a diverse family of cysteine-rich low molecular weight proteins, the metallothioneins. Plants and some fungi, however, not only deploy GSH and metallothioneins for metal detoxification but also synthesize another class of heavy metal binding peptides termed phytochelatins (PCs) from GSH. Here we show that PC-mediated heavy metal detoxification is not restricted to plants and some fungi but extends to animals by demonstrating that the ce-pcs-1 gene of the nematode worm Caenorhabditis elegans encodes a functional PC synthase whose activity is critical for heavy metal tolerance in the intact organism.


Assuntos
Aminoaciltransferases/genética , Aminoaciltransferases/metabolismo , Cloreto de Cádmio/farmacocinética , Caenorhabditis elegans/enzimologia , Metais Pesados/farmacocinética , Animais , Cloreto de Cádmio/toxicidade , Caenorhabditis elegans/efeitos dos fármacos , Caenorhabditis elegans/genética , Deleção de Genes , Glutationa/metabolismo , Inativação Metabólica , Metaloproteínas/metabolismo , Metalotioneína/metabolismo , Fitoquelatinas , Proteínas de Plantas/metabolismo , RNA de Cadeia Dupla/genética , Saccharomyces cerevisiae/enzimologia
3.
J Biol Chem ; 275(40): 31451-9, 2000 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-10807919

RESUMO

The dependence of phytochelatin synthase (gamma-glutamylcysteine dipeptidyltranspeptidase (PCS), EC ) on heavy metals for activity has invariably been interpreted in terms of direct metal binding to the enzyme. Here we show, through analyses of immunopurified, recombinant PCS1 from Arabidopsis thaliana (AtPCS1), that free metal ions are not essential for catalysis. Although AtPCS1 appears to be primarily activated posttranslationally in the intact plant and purified AtPCS1 is able to bind heavy metals directly, metal binding per se is not responsible for catalytic activation. As exemplified by Cd(2+)- and Zn(2+)-dependent AtPCS1-mediated catalysis, the kinetics of PC synthesis approximate a substituted enzyme mechanism in which micromolar heavy metal glutathione thiolate (e.g. Cd.GS(2) or Zn.GS(2)) and free glutathione act as gamma-Glu-Cys acceptor and donor. Further, as demonstrated by the facility of AtPCS1 for the net synthesis of S-alkyl-PCs from S-alkylglutathiones with biphasic kinetics, consistent with the sufficiency of S-alkylglutathiones as both gamma-Glu-Cys donors and acceptors in media devoid of metals, even heavy metal thiolates are dispensable. It is concluded that the dependence of AtPCS1 on the provision of heavy metal ions for activity in media containing glutathione and other thiol peptides is a reflection of this enzyme's requirement for glutathione-like peptides containing blocked thiol groups for activity.


Assuntos
Aminoaciltransferases/metabolismo , Glutationa/análogos & derivados , Glutationa/metabolismo , Metais Pesados/metabolismo , Peptídeos/metabolismo , Compostos de Sulfidrila/metabolismo , Aminoácidos/química , Arabidopsis/enzimologia , Northern Blotting , Cádmio/metabolismo , Cromatografia Líquida de Alta Pressão , Relação Dose-Resposta a Droga , Ativação Enzimática , Íons , Cinética , Modelos Biológicos , Modelos Químicos , Processamento de Proteína Pós-Traducional , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/metabolismo , Fatores de Tempo , Zinco/metabolismo
4.
Proc Natl Acad Sci U S A ; 96(12): 7110-5, 1999 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-10359847

RESUMO

Phytochelatins, a class of posttranslationally synthesized peptides, play a pivotal role in heavy metal, primarily Cd2+, tolerance in plants and fungi by chelating these substances and decreasing their free concentrations. Derived from glutathione and related thiols by the action of gamma-glutamylcysteine dipeptidyl transpeptidases (phytochelatin synthases; EC 2.3.2.15), phytochelatins consist of repeating units of gamma-glutamylcysteine followed by a C-terminal Gly, Ser, or beta-Ala residue [poly-(gamma-Glu-Cys)n-Xaa]. Here we report the suppression cloning of a cDNA (AtPCS1) from Arabidopsis thaliana encoding a 55-kDa soluble protein that enhances heavy-metal tolerance and elicits Cd2+-activated phytochelatin accumulation when expressed in Saccharomyces cerevisiae. On the basis of these properties and the sufficiency of immunoaffinity-purified epitope-tagged AtPCS1 polypeptide for high rates of Cd2+-activated phytochelatin synthesis from glutathione in vitro, AtPCS1 is concluded to encode the enzyme phytochelatin synthase.


Assuntos
Aminoaciltransferases/genética , Aminoaciltransferases/isolamento & purificação , Arabidopsis/enzimologia , Proteínas de Plantas/genética , Proteínas de Plantas/isolamento & purificação , Sequência de Aminoácidos , Aminoaciltransferases/metabolismo , Dados de Sequência Molecular , Proteínas de Plantas/metabolismo , Saccharomyces cerevisiae , Alinhamento de Sequência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...