Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39091835

RESUMO

In recent years, we and others have identified a number of enhancers that, when incorporated into rAAV vectors, can restrict the transgene expression to particular neuronal populations. Yet, viral tools to access and manipulate fine neuronal subtypes are still limited. Here, we performed systematic analysis of single cell genomic data to identify enhancer candidates for each of the cortical interneuron subtypes. We established a set of enhancer-AAV tools that are highly specific for distinct cortical interneuron populations and striatal cholinergic neurons. These enhancers, when used in the context of different effectors, can target (fluorescent proteins), observe activity (GCaMP) and manipulate (opto- or chemo-genetics) specific neuronal subtypes. We also validated our enhancer-AAV tools across species. Thus, we provide the field with a powerful set of tools to study neural circuits and functions and to develop precise and targeted therapy.

2.
bioRxiv ; 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39071266

RESUMO

Inhibitory interneurons within cortical layer 1 (L1-INs) integrate inputs from diverse brain regions to modulate sensory processing and plasticity, but the sensory inputs that recruit these interneurons have not been identified. Here we used monosynaptic retrograde tracing and whole-cell electrophysiology to characterize the thalamic inputs onto two major subpopulations of L1-INs in the mouse auditory cortex. We find that the vast majority of auditory thalamic inputs to these L1-INs unexpectedly arise from the ventral subdivision of the medial geniculate body (MGBv), the tonotopically-organized primary auditory thalamus. Moreover, these interneurons receive robust functional monosynaptic MGBv inputs that are comparable to those recorded in the L4 excitatory pyramidal neurons. Our findings identify a direct pathway from the primary auditory thalamus to the L1-INs, suggesting that these interneurons are uniquely positioned to integrate thalamic inputs conveying precise sensory information with top-down inputs carrying information about brain states and learned associations.

3.
bioRxiv ; 2024 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-38586043

RESUMO

Cochlear outer hair cells (OHCs) are electromotile and are implicated in mechanisms of amplification of responses to sound that enhance sound sensitivity and frequency tuning. They send information to the brain through glutamatergic synapses onto a small subpopulation of neurons of the ascending auditory nerve, the type II spiral ganglion neurons (SGNs). The OHC synapses onto type II SGNs are sparse and weak, suggesting that type II SGNs respond primarily to loud and possibly damaging levels of sound. OHCs also receive innervation from the brain through the medial olivocochlear (MOC) efferent neurons. MOC neurons are cholinergic yet exert an inhibitory effect on auditory function as they are coupled to alpha9/alpha10 nicotinic acetylcholine receptors (nAChRs) on OHCs, which leads to calcium influx that gates SK potassium channels. The net hyperpolarization exerted by this efferent synapse reduces OHC activity-evoked electromotility and is implicated in cochlear gain control, protection against acoustic trauma, and attention. MOC neurons also label for markers of gamma-aminobutyric acid (GABA) and GABA synthesis. GABAB autoreceptor (GABABR) activation by GABA released from MOC terminals has been demonstrated to reduce ACh release, confirming important negative feedback roles for GABA. However, the full complement of GABAergic activity in the cochlea is not currently understood, including the mechanisms that regulate GABA release from MOC axon terminals, whether GABA diffuses from MOC axon terminals to other postsynaptic cells, and the location and function of GABAA receptors (GABAARs). Previous electron microscopy studies suggest that MOC neurons form contacts onto several other cell types in the cochlea, but whether these contacts form functional synapses, and what neurotransmitters are employed, are unknown. Here we use immunohistochemistry, optical neurotransmitter imaging and patch-clamp electrophysiology from hair cells, afferent dendrites, and efferent axons to demonstrate that in addition to presynaptic GABABR autoreceptor activation, MOC efferent axon terminals release GABA onto type II SGN afferent dendrites with postsynaptic activity mediated by GABAARs. This synapse may have multiple roles including developmental regulation of cochlear innervation, fine tuning of OHC activity, or providing feedback to the brain about MOC and OHC activity.

4.
J Neurosci ; 40(25): 4842-4857, 2020 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-32430293

RESUMO

The organ of Corti, the auditory mammalian sensory epithelium, contains two types of mechanotransducer cells, inner hair cells (IHCs) and outer hair cells (OHCs). IHCs are involved in conveying acoustic stimuli to the CNS, while OHCs are implicated in the fine tuning and amplification of sounds. OHCs are innervated by medial olivocochlear (MOC) cholinergic efferent fibers. The functional characteristics of the MOC-OHC synapse during maturation were assessed by electrophysiological and pharmacological methods in mouse organs of Corti at postnatal day 11 (P11)-P13, hearing onset in altricial rodents, and at P20-P22 when the OHCs are morphologically and functionally mature. Synaptic currents were recorded in whole-cell voltage-clamped OHCs while electrically stimulating the MOC fibers. A progressive increase in the number of functional MOC-OHC synapses, as well as in their strength and efficacy, was observed between P11-13 and P20-22. At hearing onset, the MOC-OHC synapse presented facilitation during MOC fibers high-frequency stimulation that disappeared at mature stages. In addition, important changes were found in the VGCC that are coupled to transmitter release. Ca2+ flowing in through L-type VGCCs contribute to trigger ACh release together with P/Q- and R-type VGCCs at P11-P13, but not at P20-P22. Interestingly, N-type VGCCs were found to be involved in this process at P20-P22, but not at hearing onset. Moreover, the degree of compartmentalization of calcium channels with respect to BK channels and presynaptic release components significantly increased from P11-P13 to P20-P22. These results suggest that the MOC-OHC synapse is immature at the onset of hearing.SIGNIFICANCE STATEMENT The functional expression of both VGCCs and BK channels, as well as their localization with respect to the presynaptic components involved in transmitter release, are key elements in determining synaptic efficacy. In this work, we show dynamic changes in the expression of VGCCs and Ca2+-dependent BK K+ channels coupled to ACh release at the MOC-OHC synapse and their shift in compartmentalization during postnatal maturation. These processes most likely set the short-term plasticity pattern and reliability of the MOC-OHC synapse on high-frequency activity.


Assuntos
Células Ciliadas Auditivas Externas/fisiologia , Neurogênese/fisiologia , Plasticidade Neuronal/fisiologia , Órgão Espiral/crescimento & desenvolvimento , Sinapses/fisiologia , Animais , Canais de Cálcio/metabolismo , Feminino , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neurônios Eferentes/fisiologia , Órgão Espiral/fisiologia
5.
J Neurosci ; 39(18): 3360-3375, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30755493

RESUMO

In the mature mammalian cochlea, inner hair cells (IHCs) are mainly innervated by afferent fibers that convey sound information to the CNS. During postnatal development, however, medial olivocochlear (MOC) efferent fibers transiently innervate the IHCs. The MOC-IHC synapse, functional from postnatal day 0 (P0) to hearing onset (P12), undergoes dramatic changes in the sensitivity to acetylcholine (ACh) and in the expression of key postsynaptic proteins. To evaluate whether there are associated changes in the properties of ACh release during this period, we used a cochlear preparation from mice of either sex at P4, P6-P7, and P9-P11 and monitored transmitter release from MOC terminals in voltage-clamped IHCs in the whole-cell configuration. The quantum content increased 5.6× from P4 to P9-P11 due to increases in the size and replenishment rate of the readily releasable pool of synaptic vesicles without changes in their probability of release or quantum size. This strengthening in transmission was accompanied by changes in short-term plasticity properties, which switched from facilitation at P4 to depression at P9-P11. We have previously shown that at P9-P11, ACh release is supported by P/Q- and N-type voltage-gated calcium channels (VGCCs) and negatively regulated by BK potassium channels activated by Ca2+ influx through L-type VGCCs. We now show that at P4 and P6-P7, release is mediated by P/Q-, R- and L-type VGCCs. Interestingly, L-type VGCCs have a dual role: they both support release and fuel BK channels, suggesting that at immature stages presynaptic proteins involved in release are less compartmentalized.SIGNIFICANCE STATEMENT During postnatal development before the onset of hearing, cochlear inner hair cells (IHCs) present spontaneous Ca2+ action potentials that release glutamate at the first auditory synapse in the absence of sound stimulation. The IHC Ca2+ action potential frequency pattern, which is crucial for the correct establishment and function of the auditory system, is regulated by the efferent medial olivocochlear (MOC) system that transiently innervates IHCs during this period. We show here that developmental changes in synaptic strength and synaptic plasticity properties at the MOC-IHC synapse upon MOC fiber activation at different frequencies might be crucial for tightly shaping the pattern of afferent activity during this critical period.


Assuntos
Cóclea/crescimento & desenvolvimento , Células Ciliadas Auditivas Internas/fisiologia , Sinapses/fisiologia , Transmissão Sináptica , Acetilcolina/metabolismo , Animais , Cóclea/metabolismo , Feminino , Potenciais Pós-Sinápticos Inibidores , Masculino , Camundongos Endogâmicos BALB C , Plasticidade Neuronal
6.
J Neurosci ; 38(16): 3939-3954, 2018 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-29572431

RESUMO

Gain control of the auditory system operates at multiple levels. Cholinergic medial olivocochlear (MOC) fibers originate in the brainstem and make synaptic contacts at the base of the outer hair cells (OHCs), the final targets of several feedback loops from the periphery and higher-processing centers. Efferent activation inhibits OHC active amplification within the mammalian cochlea, through the activation of a calcium-permeable α9α10 ionotropic cholinergic nicotinic receptor (nAChR), functionally coupled to calcium activated SK2 potassium channels. Correct operation of this feedback requires careful matching of acoustic input with the strength of cochlear inhibition (Galambos, 1956; Wiederhold and Kiang, 1970; Gifford and Guinan, 1987), which is driven by the rate of MOC activity and short-term facilitation at the MOC-OHC synapse (Ballestero et al., 2011; Katz and Elgoyhen, 2014). The present work shows (in mice of either sex) that a mutation in the α9α10 nAChR with increased duration of channel gating (Taranda et al., 2009) greatly elongates hair cell-evoked IPSCs and Ca2+ signals. Interestingly, MOC-OHC synapses of L9'T mice presented reduced quantum content and increased presynaptic facilitation. These phenotypic changes lead to enhanced and sustained synaptic responses and OHC hyperpolarization upon high-frequency stimulation of MOC terminals. At the cochlear physiology level these changes were matched by a longer time course of efferent MOC suppression. This indicates that the properties of the MOC-OHC synapse directly determine the efficacy of the MOC feedback to the cochlea being a main player in the "gain control" of the auditory periphery.SIGNIFICANCE STATEMENT Plasticity can involve reciprocal signaling across chemical synapses. An opportunity to study this phenomenon occurs in the mammalian cochlea whose sensitivity is regulated by efferent olivocochlear neurons. These release acetylcholine to inhibit sensory hair cells. A point mutation in the hair cell's acetylcholine receptor that leads to increased gating of the receptor greatly elongates IPSCs. Interestingly, efferent terminals from mutant mice present a reduced resting release probability. However, upon high-frequency stimulation transmitter release facilitates strongly to produce stronger and far longer-lasting inhibition of cochlear function. Thus, central neuronal feedback on cochlear hair cells provides an opportunity to define plasticity mechanisms in cholinergic synapses other than the highly studied neuromuscular junction.


Assuntos
Mutação com Ganho de Função , Células Ciliadas Auditivas/metabolismo , Plasticidade Neuronal , Receptores Nicotínicos/genética , Animais , Sinalização do Cálcio , Retroalimentação Fisiológica , Feminino , Células Ciliadas Auditivas/fisiologia , Potenciais Pós-Sinápticos Inibidores , Ativação do Canal Iônico , Masculino , Camundongos , Neurônios Eferentes/metabolismo , Neurônios Eferentes/fisiologia , Receptores Nicotínicos/metabolismo
7.
Synth Biol (Oxf) ; 2(1): ysx006, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32995507

RESUMO

The diversity and flexibility of life offers a wide variety of molecules and systems useful for biosensing. A biosensor device should be robust, specific and reliable. Inorganic arsenic is a highly toxic water contaminant with worldwide distribution that poses a threat to public health. With the goal of developing an arsenic biosensor, we designed an incoherent feed-forward loop (I-FFL) genetic circuit to correlate its output pulse with the input signal in a relatively time-independent manner. The system was conceived exclusively based on the available BioBricks in the iGEM Registry of Standard Biological Parts. The expected behavior in silico was achieved; upon arsenic addition, the system generates a short-delayed reporter protein pulse that is dose dependent to the contaminant levels. This work is an example of the power and variety of the iGEM Registry of Standard Biological Parts, which can be reused in different sophisticated system designs like I-FFLs. Besides the scientific results, one of the main impacts of this synthetic biology project is the influence it had on team's members training and career choices which are summarized at the end of this article.

8.
Am J Physiol Cell Physiol ; 306(4): C396-406, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24336653

RESUMO

Acid-sensing ion channels (ASIC) open in response to extracellular acidosis. ASIC1a, a particular subtype of these channels, has been described to have a postsynaptic distribution in the brain, being involved not only in ischemia and epilepsy, but also in fear and psychiatric pathologies. High-frequency stimulation of skeletal motor nerve terminals (MNTs) can induce presynaptic pH changes in combination with an acidification of the synaptic cleft, known to contribute to muscle fatigue. Here, we studied the role of ASIC1a channels on neuromuscular transmission. We combined a behavioral wire hanging test with electrophysiology, pharmacological, and immunofluorescence techniques to compare wild-type and ASIC1a lacking mice (ASIC1a (-/-) knockout). Our results showed that 1) ASIC1a (-/-) female mice were weaker than wild type, presenting shorter times during the wire hanging test; 2) spontaneous neurotransmitter release was reduced by ASIC1a activation, suggesting a presynaptic location of these channels at individual MNTs; 3) ASIC1a-mediated effects were emulated by extracellular local application of acid saline solutions (pH = 6.0; HEPES/MES-based solution); and 4) immunofluorescence techniques revealed the presence of ASIC1a antigens on MNTs. These results suggest that ASIC1a channels might be involved in controlling neuromuscular transmission, muscle contraction and fatigue in female mice.


Assuntos
Canais Iônicos Sensíveis a Ácido/metabolismo , Neurônios Motores/metabolismo , Músculo Esquelético/inervação , Junção Neuromuscular/metabolismo , Transmissão Sináptica , Canais Iônicos Sensíveis a Ácido/deficiência , Canais Iônicos Sensíveis a Ácido/genética , Animais , Comportamento Animal , Estimulação Elétrica , Potencial Evocado Motor , Feminino , Força da Mão , Concentração de Íons de Hidrogênio , Masculino , Camundongos , Camundongos Knockout , Placa Motora/metabolismo , Contração Muscular , Fadiga Muscular , Terminações Pré-Sinápticas/metabolismo , Fatores Sexuais , Fatores de Tempo
9.
J Neurochem ; 119(4): 826-38, 2011 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21883225

RESUMO

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by a gradual loss of motoneurons. The majority of ALS cases are associated with a sporadic form whose etiology is unknown. Several pieces of evidence favor autoimmunity as a potential contributor to sporadic ALS pathology. To gain understanding concerning possible antigens interacting with IgGs from sporadic ALS patients (ALS-IgGs), we studied immunoreactivity against neuromuscular junction (NMJ), spinal cord and cerebellum of mice with and without the Ca(V) 2.1 pore-forming subunit of the P/Q-type voltage-gated calcium (Ca(2+)) channel. ALS-IgGs showed a strong reactivity against NMJs of wild-type diaphragms. ALS-IgGs also increased muscle miniature end-plate potential frequency, suggesting a functional role for ALS-IgGs on synaptic signaling. In support, in mice lacking the Ca(V) 2.1 subunit ALS-IgGs showed significantly reduced NMJ immunoreactivity and did not alter spontaneous acetylcholine release. This difference in reactivity was absent when comparing N-type Ca(2+) channel wild-type or null mice. These results are particularly relevant because motoneurons are known to be early pathogenic targets in ALS. Our findings add further evidence supporting autoimmunity as one of the possible mechanisms contributing to ALS pathology. They also suggest that serum autoantibodies in a subset of ALS patients would interact with NMJ proteins down-regulated when P/Q-type channels are absent.


Assuntos
Esclerose Lateral Amiotrófica/sangue , Canais de Cálcio Tipo N/metabolismo , Imunoglobulina G/farmacologia , Junção Neuromuscular/efeitos dos fármacos , Idoso , Análise de Variância , Animais , Animais Recém-Nascidos , Bungarotoxinas/farmacocinética , Canais de Cálcio Tipo N/deficiência , Linhagem Celular Transformada , Sistema Nervoso Central/metabolismo , Diafragma/citologia , Feminino , Humanos , Imunoprecipitação/métodos , Técnicas In Vitro , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Pessoa de Meia-Idade , Potenciais Pós-Sinápticos em Miniatura/efeitos dos fármacos , Potenciais Pós-Sinápticos em Miniatura/genética , Junção Neuromuscular/metabolismo , Sinaptofisina/metabolismo , Transfecção/métodos , Proteína 2 Associada à Membrana da Vesícula/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA