Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Adv Pharmacol ; 99: 1-33, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38467478

RESUMO

The availability of monoamine neurotransmitters in the brain is under the control of dopamine, norepinephrine, and serotonin transporters expressed on the plasma membrane of monoaminergic neurons. By regulating transmitter levels these proteins mediate crucial functions including cognition, attention, and reward, and dysregulation of their activity is linked to mood and psychiatric disorders of these systems. Amphetamine-based transporter substrates stimulate non-exocytotic transmitter efflux that induces psychomotor stimulation, addiction, altered mood, hallucinations, and psychosis, thus constituting a major component of drug neurochemical and behavioral outcomes. Efflux is under the control of transporter post-translational modifications that synergize with other regulatory events, and this review will summarize our knowledge of these processes and their role in drug mechanisms.


Assuntos
Anfetamina , Dopamina , Humanos , Anfetamina/farmacologia , Transporte Biológico , Dopamina/metabolismo , Neurotransmissores , Processamento de Proteína Pós-Traducional
2.
Curr Res Physiol ; 6: 100106, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38107792

RESUMO

The primary regulator of dopamine availability in the brain is the dopamine transporter (DAT), a plasma membrane protein that drives reuptake of released dopamine from the extracellular space into the presynaptic neuron. DAT activity is regulated by post-translational modifications that establish clearance capacity through impacts on transport kinetics, and dysregulation of these events may underlie dopaminergic imbalances in mood and psychiatric disorders. Here, using fluorescence recovery after photobleaching, we show that phosphorylation and palmitoylation induce opposing effects on DAT lateral membrane mobility, which may influence functional outcomes by regulating subcellular localization and binding partner interactions. Membrane mobility was also impacted by amphetamine and in polymorphic variant A559V in directions consistent with enhanced phosphorylation. These findings grow the list of DAT properties controlled by these post-translational modifications and highlight their role in establishment of dopaminergic tone in physiological and pathophysiological states.

3.
bioRxiv ; 2023 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-37205452

RESUMO

Aberrant dopamine (DA) signaling is implicated in schizophrenia, bipolar disorder (BPD), autism spectrum disorder (ASD), substance use disorder, and attention-deficit/hyperactivity disorder (ADHD). Treatment of these disorders remains inadequate. We established that the human DA transporter (DAT) coding variant (DAT Val559), identified in individuals with ADHD, ASD, or BPD, exhibits anomalous DA efflux (ADE) that is blocked by therapeutic amphetamines and methylphenidate. As the latter agents have high abuse liability, we exploited DAT Val559 knock-in mice to identify non-addictive agents that can normalize DAT Val559 functional and behavioral effects ex vivo and in vivo. Kappa opioid receptors (KORs) are expressed by DA neurons and modulate DA release and clearance, suggesting that targeting KORs might offset the effects of DAT Val559. We establish that enhanced DAT Thr53 phosphorylation and increased DAT surface trafficking associated with DAT Val559 expression are mimicked by KOR agonism of wildtype preparations and rescued by KOR antagonism of DAT Val559 ex vivo preparations. Importantly, KOR antagonism also corrected in vivo DA release and sex-dependent behavioral abnormalities. Given their low abuse liability, our studies with a construct valid model of human DA associated disorders reinforce considerations of KOR antagonism as a pharmacological strategy to treat DA associated brain disorders.

4.
Mol Psychiatry ; 27(12): 4869-4880, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36117213

RESUMO

Virtually all neuropsychiatric disorders display sex differences in prevalence, age of onset, and/or clinical symptomology. Although altered dopamine (DA) signaling is a feature of many of these disorders, sex-dependent mechanisms uniquely responsive to DA that drive sex-dependent behaviors remain unelucidated. Previously, we established that anomalous DA efflux (ADE) is a prominent feature of the DA transporter (DAT) variant Val559, a coding substitution identified in two male-biased disorders: attention-deficit/hyperactivity disorder and autism spectrum disorder. In vivo, Val559 ADE induces activation of nigrostriatal D2-type DA autoreceptors (D2ARs) that magnifies inappropriate, nonvesicular DA release by elevating phosphorylation and surface trafficking of ADE-prone DAT proteins. Here we demonstrate that DAT Val559 mice exhibit sex-dependent alterations in psychostimulant responses, social behavior, and cognitive performance. In a search for underlying mechanisms, we discovered that the ability of ADE to elicit D2AR regulation of DAT is both sex and circuit-dependent, with dorsal striatum D2AR/DAT coupling evident only in males, whereas D2AR/DAT coupling in the ventral striatum is exclusive to females. Moreover, systemic administration of the D2R antagonist sulpiride, which precludes ADE-driven DAT trafficking, can normalize DAT Val559 behavioral changes unique to each sex and without effects on the opposite sex or wildtype mice. Our studies support the sex- and circuit dependent capacity of D2ARs to regulate DAT as a critical determinant of the sex-biased effects of perturbed DA signaling in neurobehavioral disorders. Moreover, our work provides a cogent example of how a shared biological insult drives alternative physiological and behavioral trajectories as opposed to resilience.


Assuntos
Transtorno do Deficit de Atenção com Hiperatividade , Transtorno do Espectro Autista , Dopamina , Animais , Feminino , Masculino , Camundongos , Transtorno do Deficit de Atenção com Hiperatividade/metabolismo , Transtorno do Espectro Autista/metabolismo , Estimulantes do Sistema Nervoso Central/farmacologia , Estimulantes do Sistema Nervoso Central/uso terapêutico , Dopamina/metabolismo , Dopamina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Transdução de Sinais
5.
Life Sci ; 288: 120142, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34774621

RESUMO

AIMS: Determine the effect of palmitoylation on the sodium hydrogen exchanger isoform 1 (NHE1), a member of the SLC9 family. MAIN METHODS: NHE1 expressed in native rat tissues or in heterologous cells was assessed for palmitoylation by acyl-biotinyl exchange (ABE) and metabolic labeling with [3H]palmitate. Cellular palmitoylation was inhibited using 2-bromopalmitate (2BP) followed by determination of NHE1 palmitoylation status, intracellular pH, stress fiber formation, and cell migration. In addition, NHE1 was activated with LPA treatment followed by determination of NHE1 palmitoylation status and LPA-induced change in intracellular pH was determined in the presence and absence of preincubation with 2BP. KEY FINDINGS: In this study we demonstrate for the first time that NHE1 is palmitoylated in both cells and rat tissue, and that processes controlled by NHE1 including intracellular pH (pHi), stress fiber formation, and cell migration, are regulated in concert with NHE1 palmitoylation status. Importantly, LPA stimulates NHE1 palmitoylation, and 2BP pretreatment dampens LPA-induced increased pHi which is dependent on the presence of NHE1. SIGNIFICANCE: Palmitoylation is a reversible lipid modification that regulates an array of critical protein functions including activity, trafficking, membrane microlocalization and protein-protein interactions. Our results suggest that palmitoylation of NHE1 and other control/signaling proteins play a major role in NHE1 regulation that could significantly impact multiple critical cellular functions.


Assuntos
Actinas/metabolismo , Movimento Celular , Proliferação de Células , Lipoilação , Processamento de Proteína Pós-Traducional , Trocador 1 de Sódio-Hidrogênio/química , Trocador 1 de Sódio-Hidrogênio/metabolismo , Animais , Concentração de Íons de Hidrogênio , Ratos
6.
J Neurochem ; 152(6): 623-626, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31917872

RESUMO

The dorsal striatum coordinates input-output processing of numerous functions including those related to motor activity, motivation, and learning. Considerable anatomical and biochemical heterogeneity across striatal subregions has long been known to result in distinct functional outcomes, and for imbalances in these pathways to contribute to many complex disorders. Here we highlight the study of Hörtnagl et al. (2019) who utilize precision dissection of human caudate nucleus and putamen for detailed measurement of major neurochemical markers to address the question of anatomical heterogeneity of neurotransmitter distribution and turnover in these regions. The findings identify gradients of neurotransmitter markers in rostro-caudal, dorso-lateral, and anterior-posterior directions with a precision that has not been previously determined in humans. Correlative analyses of the results also suggest tentative links between content of various neurotransmitters in specific subregions, raising the intriguing possibility that neurotransmitter quantity in one territory may correlate with the quantity of the same or different transmitter from another territory. This suggests the presence of a functional anatomy over extensive brain regions and networks that can be studied through multiple correlative analyses, and identify a possible basis for a new approach for postmortem analysis of neurotransmitter distribution and function.


Assuntos
Biomarcadores/análise , Núcleo Caudado/química , Neurotransmissores/análise , Putamen/química , Idoso , Feminino , Humanos , Masculino , Mudanças Depois da Morte
7.
ACS Chem Neurosci ; 10(6): 2707-2717, 2019 06 19.
Artigo em Inglês | MEDLINE | ID: mdl-30965003

RESUMO

The dopamine transporter (DAT) is a plasma membrane protein that mediates the reuptake of extracellular dopamine (DA) and controls the spatiotemporal dynamics of dopaminergic neurotransmission. The transporter is subject to fine control that tailors clearance of transmitter to physiological demands, and dysregulation of reuptake induced by psychostimulant drugs, transporter polymorphisms, and signaling defects may impact transmitter tone in disease states. We previously demonstrated that DAT undergoes complex regulation by palmitoylation, with acute inhibition of the modification leading to rapid reduction of transport activity and sustained inhibition of the modification leading to transporter degradation and reduced expression. Here, to examine mechanisms and outcomes related to increased modification, we coexpressed DAT with palmitoyl acyltransferases (PATs), also known as DHHC enzymes, which catalyze palmitate addition to proteins. Of 12 PATs tested, DAT palmitoylation was stimulated by DHHC2, DHHC3, DHHC8, DHHC15, and DHHC17, with others having no effect. Increased modification was localized to previously identified palmitoylation site Cys580 and resulted in upregulation of transport kinetics and elevated transporter expression mediated by reduced degradation. These findings confirm palmitoylation as a regulator of multiple DAT properties crucial for appropriate DA homeostasis and identify several potential PAT pathways linked to these effects. Defects in palmitoylation processes thus represent possible mechanisms of transport imbalances in DA disorders.


Assuntos
Aciltransferases/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Dopamina/metabolismo , Lipoilação/fisiologia , Animais , Estabilidade Proteica , Ratos , Transmissão Sináptica/fisiologia
8.
Neurochem Int ; 123: 13-21, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30179648

RESUMO

The dopamine transporter (DAT) plays a critical role in dopamine (DA) homeostasis by clearing transmitter from the extraneuronal space after vesicular release. DAT serves as a site of action for a variety of addictive and therapeutic reuptake inhibitors, and transport dysfunction is associated with transmitter imbalances in disorders such as schizophrenia, attention deficit hyperactive disorder, bipolar disorder, and Parkinson disease. In this review, we describe some of the model systems that have been used for in vitro analyses of DAT structure, function and regulation, and discuss a potential relationship between transporter kinetic values and membrane cholesterol.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Inibidores da Captação de Dopamina/farmacologia , Dopamina/metabolismo , Animais , Transtorno do Deficit de Atenção com Hiperatividade/tratamento farmacológico , Transtorno do Deficit de Atenção com Hiperatividade/metabolismo , Humanos , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/metabolismo , Esquizofrenia/tratamento farmacológico , Esquizofrenia/metabolismo
9.
Neurochem Int ; 123: 34-45, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30125594

RESUMO

The dopamine transporter (DAT) is a neuronal membrane protein that is responsible for reuptake of dopamine (DA) from the synapse and functions as a major determinant in control of DA neurotransmission. Cocaine and many psychostimulant drugs bind to DAT and block reuptake, inducing DA overflow that forms the neurochemical basis for euphoria and addiction. Paradoxically, however, some ligands such as benztropine (BZT) bind to DAT and inhibit reuptake but do not produce these effects, and it has been hypothesized that differential mechanisms of binding may stabilize specific transporter conformations that affect downstream neurochemical or behavioral outcomes. To investigate the binding mechanisms of BZT on DAT we used the photoaffinity BZT analog [125I]N-[n-butyl-4-(4‴-azido-3‴-iodophenyl)]-4',4″-difluoro-3α-(diphenylmethoxy)tropane ([125I]GA II 34) to identify the site of cross-linking and predict the binding pose relative to that of previously-examined cocaine photoaffinity analogs. Biochemical findings show that adduction of [125I]GA II 34 occurs at residues Asp79 or Leu80 in TM1, with molecular modeling supporting adduction to Leu80 and a pharmacophore pose in the central S1 site similar to that of cocaine and cocaine analogs. Substituted cysteine accessibility method protection analyses verified these findings, but identified some differences in structural stabilization relative to cocaine that may relate to BZT neurochemical outcomes.


Assuntos
Benzotropina/farmacologia , Sítios de Ligação/efeitos dos fármacos , Cocaína/farmacologia , Dopamina/metabolismo , Relação Estrutura-Atividade , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Inibidores da Captação de Dopamina/farmacologia , Humanos , Radioisótopos do Iodo/farmacologia
10.
J Biol Chem ; 294(10): 3419-3431, 2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30587577

RESUMO

Several protein kinases, including protein kinase C, Ca2+/calmodulin-dependent protein kinase II, and extracellular signal-regulated kinase, play key roles in the regulation of dopamine transporter (DAT) functions. These functions include surface expression, internalization, and forward and reverse transport, with phosphorylation sites for these kinases being linked to distinct regions of the DAT N terminus. Protein phosphatases (PPs) also regulate DAT activity, but the specific residues associated with their activities have not yet been elucidated. In this study, using co-immunoprecipitation followed by MS and immunoblotting analyses, we demonstrate the association of DAT with PP1 and PP2A in the mouse brain and heterologous cell systems. By applying MS in conjunction with a metabolic labeling method, we defined a PP1/2A-sensitive phosphorylation site at Thr-48 in human DAT, a residue that has not been previously reported to be involved in DAT phosphorylation. Site-directed mutagenesis of Thr-48 to Ala (T48A) to prevent phosphorylation enhanced dopamine transport kinetics, supporting a role for this residue in regulating DAT activity. Moreover, T48A-DAT displayed increased palmitoylation, suggesting that phosphorylation/dephosphorylation at this site has an additional regulatory role and reinforcing a previously reported reciprocal relationship between C-terminal palmitoylation and N-terminal phosphorylation.


Assuntos
Encéfalo/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Dopamina/metabolismo , Proteína Fosfatase 1/metabolismo , Proteína Fosfatase 2/metabolismo , Animais , Transporte Biológico Ativo/fisiologia , Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Humanos , Lipoilação/genética , Camundongos , Camundongos Knockout , Fosforilação , Proteína Fosfatase 1/genética , Proteína Fosfatase 2/genética , Treonina/genética , Treonina/metabolismo
11.
J Neurosci ; 38(23): 5302-5312, 2018 06 06.
Artigo em Inglês | MEDLINE | ID: mdl-29739866

RESUMO

Disruptions of dopamine (DA) signaling contribute to a broad spectrum of neuropsychiatric disorders, including attention-deficit hyperactivity disorder (ADHD), addiction, bipolar disorder, and schizophrenia. Despite evidence that risk for these disorders derives from heritable variation in DA-linked genes, a better understanding is needed of the molecular and circuit context through which gene variation drives distinct disease traits. Previously, we identified the DA transporter (DAT) variant Val559 in subjects with ADHD and established that the mutation supports anomalous DAT-mediated DA efflux (ADE). Here, we demonstrate that region-specific contributions of D2 autoreceptors (D2AR) to presynaptic DA homeostasis dictate the consequences of Val559 expression in adolescent male mice. We show that activation of D2ARs in the WT dorsal striatum (DS), but not ventral striatum (VS), increases DAT phosphorylation and surface trafficking. In contrast, the activity of tyrosine hydroxylase (TH) is D2AR-dependent in both regions. In the DS but not VS of Val559 mice, tonic activation of D2ARs drives a positive feedback loop that promotes surface expression of efflux-prone DATs, raising extracellular DA levels and overwhelming DAT-mediated DA clearance capacity. Whereas D2ARs that regulate DAT are tonically activated in the Val559 DS, D2ARs that regulate TH become desensitized, allowing maintenance of cytosolic DA needed to sustain ADE. Together with prior findings, our results argue for distinct D2AR pools that regulate DA synthesis versus DA release and inactivation and offer a clear example of how the penetrance of gene variation can be limited to a subset of expression sites based on differences in intersecting regulatory networks.SIGNIFICANCE STATEMENT Altered dopamine (DA) signaling has been linked to multiple neuropsychiatric disorders. In an effort to understand and model disease-associated DAergic disturbances, we previously screened the DA transporter (DAT) in subjects with attention-deficit hyperactivity disorder (ADHD) and identified multiple, functionally impactful, coding variants. One of these variants, Val559, supports anomalous DA efflux (ADE) and in transgenic mice leads to changes in locomotor patterns, psychostimulant sensitivity, and impulsivity. Here, we show that the penetrance of Val559 ADE is dictated by region-specific differences in how presynaptic D2-type autoreceptors (D2ARs) constrain DA signaling, biasing phenotypic effects to dorsal striatal projections. The Val559 model illustrates how the impact of genetic variation underlying neuropsychiatric disorders can be shaped by the differential engagement of synaptic regulatory mechanisms.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Dopamina/metabolismo , Penetrância , Receptores de Dopamina D2/metabolismo , Animais , Autorreceptores/genética , Autorreceptores/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Variação Genética , Homeostase/fisiologia , Masculino , Transtornos Mentais/genética , Transtornos Mentais/metabolismo , Camundongos , Camundongos Transgênicos
12.
J Biol Chem ; 292(46): 19066-19075, 2017 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-28939767

RESUMO

The dopamine transporter (DAT) controls the spatial and temporal dynamics of dopamine neurotransmission through reuptake of extracellular transmitter and is a target for addictive compounds such as cocaine, amphetamine (AMPH), and methamphetamine (METH). Reuptake is regulated by kinase pathways and drug exposure, allowing for fine-tuning of clearance in response to specific conditions, and here we examine the impact of transporter ligands on DAT residue Thr-53, a proline-directed phosphorylation site previously implicated in AMPH-stimulated efflux mechanisms. Our findings show that Thr-53 phosphorylation is stimulated in a transporter-dependent manner by AMPH and METH in model cells and rat striatal synaptosomes, and in striatum of rats given subcutaneous injection of METH. Rotating disc electrode voltammetry revealed that initial rates of uptake and AMPH-induced efflux were elevated in phosphorylation-null T53A DAT relative to WT and charge-substituted T53D DATs, consistent with functions related to charge or polarity. These effects occurred without alterations of surface transporter levels, and mutants also showed reduced cocaine analog binding affinity that was not rescued by Zn2+ Together these findings support a role for Thr-53 phosphorylation in regulation of transporter kinetic properties that could impact DAT responses to amphetamines and cocaine.


Assuntos
Anfetamina/farmacologia , Transporte Biológico/efeitos dos fármacos , Cocaína/metabolismo , Dopaminérgicos/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Inibidores da Captação de Dopamina/metabolismo , Dopamina/metabolismo , Animais , Linhagem Celular , Cocaína/análogos & derivados , Inibidores da Captação de Dopamina/química , Masculino , Metanfetamina/farmacologia , Fosforilação/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Ratos Sprague-Dawley , Suínos , Treonina/metabolismo
13.
Biochem Pharmacol ; 142: 204-215, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28734777

RESUMO

Dopamine transporter (DAT) blockers like cocaine and many other abused and therapeutic drugs bind and stabilize an inactive form of the transporter inhibiting reuptake of extracellular dopamine (DA). The resulting increases in DA lead to the ability of these drugs to induce psychomotor alterations and addiction, but paradoxical findings in animal models indicate that not all DAT antagonists induce cocaine-like behavioral outcomes. How this occurs is not known, but one possibility is that uptake inhibitors may bind at multiple locations or in different poses to stabilize distinct conformational transporter states associated with differential neurochemical endpoints. Understanding the molecular mechanisms governing the pharmacological inhibition of DAT is therefore key for understanding the requisite interactions for behavioral modulation and addiction. Previously, we leveraged complementary computational docking, mutagenesis, peptide mapping, and substituted cysteine accessibility strategies to identify the specific adduction site and binding pose for the crosslinkable, photoactive cocaine analog, RTI 82, which contains a photoactive azide attached at the 2ß position of the tropane pharmacophore. Here, we utilize similar methodology with a different cocaine analog N-[4-(4-azido-3-I-iodophenyl)-butyl]-2-carbomethoxy-3-(4-chlorophenyl)tropane, MFZ 2-24, where the photoactive azide is attached to the tropane nitrogen. In contrast to RTI 82, which crosslinked into residue Phe319 of transmembrane domain (TM) 6, our findings show that MFZ 2-24 adducts to Leu80 in TM1 with modeling and biochemical data indicating that MFZ 2-24, like RTI 82, occupies the central S1 binding pocket with the (+)-charged tropane ring nitrogen coordinating with the (-)-charged carboxyl side chain of Asp79. The superimposition of the tropane ring in the three-dimensional binding poses of these two distinct ligands provides strong experimental evidence for cocaine binding to DAT in the S1 site and the importance of the tropane moiety in competitive mechanisms of DA uptake inhibition. These findings set a structure-function baseline for comparison of typical and atypical DAT inhibitors and how their interactions with DAT could lead to the loss of cocaine-like behaviors.


Assuntos
Cocaína/análogos & derivados , Proteínas da Membrana Plasmática de Transporte de Dopamina/antagonistas & inibidores , Transtornos Relacionados ao Uso de Substâncias/metabolismo , Tropanos/metabolismo , Animais , Azidas/química , Azidas/metabolismo , Sítios de Ligação , Cocaína/química , Cocaína/metabolismo , Reagentes de Ligações Cruzadas/química , Reagentes de Ligações Cruzadas/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/química , Radioisótopos do Iodo , Células LLC-PK1 , Ligantes , Simulação de Acoplamento Molecular , Simulação de Dinâmica Molecular , Estrutura Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Mapeamento de Peptídeos , Marcadores de Fotoafinidade , Ligação Proteica , Relação Estrutura-Atividade , Transtornos Relacionados ao Uso de Substâncias/psicologia , Suínos , Tropanos/química
14.
J Chem Neuroanat ; 83-84: 3-9, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28115272

RESUMO

The neurotransmitter dopamine (DA) plays a key role in several biological processes including reward, mood, motor activity and attention. Synaptic DA homeostasis is controlled by the dopamine transporter (DAT) which transports extracellular DA into the presynaptic neuron after release and regulates its availability to receptors. Many neurological disorders such as schizophrenia, bipolar disorder, Parkinson disease and attention-deficit hyperactivity disorder are associated with imbalances in DA homeostasis that may be related to DAT dysfunction. DAT is also a target of psychostimulant and therapeutic drugs that inhibit DA reuptake and lead to elevated dopaminergic neurotransmission. We have recently demonstrated the acute and chronic modulation of DA reuptake activity and DAT stability through S-palmitoylation, the linkage of a 16-carbon palmitate group to cysteine via a thioester bond. This review summarizes the properties and regulation of DAT palmitoylation and describes how it serves to affect various transporter functions. Better understanding of the role of palmitoylation in regulation of DAT function may lead to identification of therapeutic targets for modulation of DA homeostasis in the treatment of dopaminergic disorders.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Lipoilação/fisiologia , Animais , Humanos , Processamento de Proteína Pós-Traducional/fisiologia
15.
J Chem Neuroanat ; 83-84: 10-18, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27836487

RESUMO

The dopamine transporter (DAT) is a plasma membrane phosphoprotein that actively translocates extracellular dopamine (DA) into presynaptic neurons. The transporter is the primary mechanism for control of DA levels and subsequent neurotransmission, and is the target for abused and therapeutic drugs that exert their effects by suppressing reuptake. The transport capacity of DAT is acutely regulated by signaling systems and drug exposure, providing neurons the ability to fine-tune DA clearance in response to specific conditions. Kinase pathways play major roles in these mechanisms, and this review summarizes the current status of DAT phosphorylation characteristics and the evidence linking transporter phosphorylation to control of reuptake and other functions. Greater understanding of these processes may aid in elucidation of their possible contributions to DA disease states and suggest specific phosphorylation sites as targets for therapeutic manipulation of reuptake.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Fosforilação/fisiologia , Animais , Humanos , Processamento de Proteína Pós-Traducional/fisiologia
16.
Eur J Neurosci ; 43(5): 662-70, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26613374

RESUMO

Cues (conditioned stimuli; CSs) associated with rewards can come to motivate behavior, but there is considerable individual variation in their ability to do so. For example, a lever-CS that predicts food reward becomes attractive and wanted, and elicits reward-seeking behavior, to a greater extent in some rats ('sign-trackers'; STs) than others ('goal-trackers'; GTs). Variation in dopamine (DA) neurotransmission in the nucleus accumbens (NAc) core is thought to contribute to such individual variation. Given that the DA transporter (DAT) exerts powerful regulation over DA signaling, we characterized the expression and function of the DAT in the accumbens of STs and GTs. STs showed greater DAT surface expression in ventral striatal synaptosomes than GTs, and ex vivo fast-scan cyclic voltammetry recordings of electrically evoked DA release confirmed enhanced DAT function in STs, as indicated by faster DA uptake, specifically in the NAc core. Consistent with this, systemic amphetamine (AMPH) produced greater inhibition of DA uptake in STs than in GTs. Furthermore, injection of AMPH directly into the NAc core enhanced lever-directed approach in STs, presumably by amplifying the incentive value of the CS, but had no effect on goal-tracking behavior. On the other hand, there were no differences between STs and GTs in electrically-evoked DA release in slices, or in total ventral striatal DA content. We conclude that greater DAT surface expression may facilitate the attribution of incentive salience to discrete reward cues. Investigating this variability in animal sub-populations may help explain why some people abuse drugs while others do not.


Assuntos
Condicionamento Clássico , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Núcleo Accumbens/fisiologia , Recompensa , Anfetamina/farmacologia , Animais , Dopamina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Exocitose , Masculino , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Ratos , Ratos Sprague-Dawley , Sinaptossomos/metabolismo
17.
J Biol Chem ; 290(48): 29095-105, 2015 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-26424792

RESUMO

The dopamine transporter is a neuronal protein that drives the presynaptic reuptake of dopamine (DA) and is the major determinant of transmitter availability in the brain. Dopamine transporter function is regulated by protein kinase C (PKC) and other signaling pathways through mechanisms that are complex and poorly understood. Here we investigate the role of Ser-7 phosphorylation and Cys-580 palmitoylation in mediating steady-state transport kinetics and PKC-stimulated transport down-regulation. Using both mutational and pharmacological approaches, we demonstrate that these post-translational modifications are reciprocally regulated, leading to transporter populations that display high phosphorylation-low palmitoylation or low phosphorylation-high palmitoylation. The balance between the modifications dictates transport capacity, as conditions that promote high phosphorylation or low palmitoylation reduce transport Vmax and enhance PKC-stimulated down-regulation, whereas conditions that promote low phosphorylation or high palmitoylation increase transport Vmax and suppress PKC-stimulated down-regulation. Transitions between these functional states occur when endocytosis is blocked or undetectable, indicating that the modifications kinetically regulate the velocity of surface transporters. These findings reveal a novel mechanism for control of DA reuptake that may represent a point of dysregulation in DA imbalance disorders.


Assuntos
Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Dopamina/metabolismo , Regulação para Baixo/fisiologia , Endocitose/fisiologia , Lipoilação/fisiologia , Proteína Quinase C/metabolismo , Linhagem Celular , Dopamina/genética , Proteínas da Membrana Plasmática de Transporte de Dopamina/genética , Humanos , Cinética , Proteína Quinase C/genética
18.
J Med Chem ; 58(14): 5609-19, 2015 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-26153715

RESUMO

Three photoaffinity ligands (PALs) for the human serotonin transporter (hSERT) were synthesized based on the selective serotonin reuptake inhibitor (SSRI), (S)-citalopram (1). The classic 4-azido-3-iodo-phenyl group was appended to either the C-1 or C-5 position of the parent molecule, with variable-length linkers, to generate ligands 15, 22, and 26. These ligands retained high to moderate affinity binding (K(i) = 24-227 nM) for hSERT, as assessed by [(3)H]5-HT transport inhibition. When tested against Ser438Thr hSERT, all three PALs showed dramatic rightward shifts in inhibitory potency, with Ki values ranging from 3.8 to 9.9 µM, consistent with the role of Ser438 as a key residue for high-affinity binding of many SSRIs, including (S)-citalopram. Photoactivation studies demonstrated irreversible adduction to hSERT by all ligands, but the reduced (S)-citalopram inhibition of labeling by [(125)I]15 compared to that by [(125)I]22 and [(125)I]26 suggests differences in binding mode(s). These radioligands will be useful for characterizing the drug-protein binding interactions for (S)-citalopram at hSERT.


Assuntos
Citalopram/metabolismo , Desenho de Fármacos , Processos Fotoquímicos , Inibidores Seletivos de Recaptação de Serotonina/metabolismo , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Azidas/química , Citalopram/síntese química , Citalopram/química , Células HEK293 , Humanos , Ligantes , Inibidores Seletivos de Recaptação de Serotonina/síntese química , Inibidores Seletivos de Recaptação de Serotonina/química
19.
J Biol Chem ; 289(43): 29712-27, 2014 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-25179220

RESUMO

The dopamine transporter (DAT) functions as a key regulator of dopaminergic neurotransmission via re-uptake of synaptic dopamine (DA). Cocaine binding to DAT blocks this activity and elevates extracellular DA, leading to psychomotor stimulation and addiction, but the mechanisms by which cocaine interacts with DAT and inhibits transport remain incompletely understood. Here, we addressed these questions using computational and biochemical methodologies to localize the binding and adduction sites of the photoactivatable irreversible cocaine analog 3ß-(p-chlorophenyl)tropane-2ß-carboxylic acid, 4'-azido-3'-iodophenylethyl ester ([(125)I]RTI 82). Comparative modeling and small molecule docking indicated that the tropane pharmacophore of RTI 82 was positioned in the central DA active site with an orientation that juxtaposed the aryliodoazide group for cross-linking to rat DAT Phe-319. This prediction was verified by focused methionine substitution of residues flanking this site followed by cyanogen bromide mapping of the [(125)I]RTI 82-labeled mutants and by the substituted cysteine accessibility method protection analyses. These findings provide positive functional evidence linking tropane pharmacophore interaction with the core substrate-binding site and support a competitive mechanism for transport inhibition. This synergistic application of computational and biochemical methodologies overcomes many uncertainties inherent in other approaches and furnishes a schematic framework for elucidating the ligand-protein interactions of other classes of DA transport inhibitors.


Assuntos
Azidas/metabolismo , Cocaína/análogos & derivados , Proteínas da Membrana Plasmática de Transporte de Dopamina/metabolismo , Simulação de Acoplamento Molecular , Animais , Azidas/química , Sítios de Ligação , Cocaína/química , Cocaína/metabolismo , Brometo de Cianogênio/metabolismo , Células HeLa , Humanos , Células LLC-PK1 , Ligantes , Mesilatos/metabolismo , Simulação de Dinâmica Molecular , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Ratos , Especificidade por Substrato , Suínos
20.
Neurochem Int ; 73: 16-26, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24269640

RESUMO

Ligand-induced changes in the conformation of extracellular loop (EL) 2 in the rat (r) dopamine transporter (DAT) were examined using limited proteolysis with endoproteinase Asp-N and detection of cleavage products by epitope-specific immunoblotting. The principle N-terminal fragment produced by Asp-N was a 19kDa peptide likely derived by proteolysis of EL2 residue D174, which is present just past the extracellular end of TM3. Production of this fragment was significantly decreased by binding of cocaine and other uptake blockers, but was not affected by substrates or Zn(2+), indicating the presence of a conformational change at D174 that may be related to the mechanism of transport inhibition. DA transport activity and cocaine analog binding were decreased by Asp-N treatment, suggesting a requirement for EL2 integrity in these DAT functions. In a previous study we demonstrated that ligand-induced protease resistance also occurred at R218 on the C-terminal side of rDAT EL2. Here using substituted cysteine accessibility analysis of human (h) DAT we confirm cocaine-induced alterations in reactivity of the homologous R219 and identify conformational sensitivity of V221. Focused molecular modeling of D174 and R218 based on currently available Aquifex aeolicus leucine transporter crystal structures places these residues within 2.9Å of one another, suggesting their proximity as a structural basis for their similar conformational sensitivities and indicating their potential to form a salt bridge. These findings extend our understanding of DAT EL2 and its role in transport and binding functions.


Assuntos
Antagonistas de Dopamina/farmacologia , Proteínas da Membrana Plasmática de Transporte de Dopamina/antagonistas & inibidores , Matriz Extracelular/metabolismo , Animais , Dopamina/metabolismo , Antagonistas de Dopamina/química , Proteínas da Membrana Plasmática de Transporte de Dopamina/química , Inibidores da Captação de Dopamina/farmacologia , Matriz Extracelular/efeitos dos fármacos , Masculino , Metaloendopeptidases/metabolismo , Modelos Moleculares , Conformação Proteica/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...