Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neurobiol Dis ; 181: 106116, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37054900

RESUMO

Tauopathy is a typical feature of Alzheimer's disease of major importance because it strongly correlates with the severity of cognitive deficits experienced by patients. During the pathology, it follows a characteristic spatiotemporal course which takes its origin in the transentorhinal cortex, and then gradually invades the entire forebrain. To study the mechanisms of tauopathy, and test new therapeutic strategies, it is necessary to set-up relevant and versatile in vivo models allowing to recapitulate tauopathy. With this in mind, we have developed a model of tauopathy by overexpression of the human wild-type Tau protein in retinal ganglion cells in mice (RGCs). This overexpression led to the presence of hyperphosphorylated forms of the protein in the transduced cells as well as to their progressive degeneration. The application of this model to mice deficient in TREM2 (Triggering Receptor Expressed on Myeloid cells-2, an important genetic risk factor for AD) as well as to 15-month-old mice showed that microglia actively participate in the degeneration of RGCs. Surprisingly, although we were able to detect the transgenic Tau protein up to the terminal arborization of RGCs at the level of the superior colliculi, spreading of the transgenic Tau protein to post-synaptic neurons was detected only in aged animals. This suggests that there may be neuron-intrinsic- or microenvironment mediators facilitating this spreading that appear with aging.


Assuntos
Doença de Alzheimer , Tauopatias , Animais , Humanos , Camundongos , Doença de Alzheimer/metabolismo , Modelos Animais de Doenças , Glicoproteínas de Membrana/metabolismo , Camundongos Transgênicos , Microglia/metabolismo , Receptores Imunológicos/metabolismo , Células Ganglionares da Retina/metabolismo , Proteínas tau/genética , Proteínas tau/metabolismo , Tauopatias/patologia , Vias Visuais/metabolismo
2.
Mol Psychiatry ; 27(5): 2590-2601, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35264729

RESUMO

Angelman syndrome (AS) is a severe neurodevelopmental disorder caused by the loss of neuronal E3 ligase UBE3A. Restoring UBE3A levels is a potential disease-modifying therapy for AS and has recently entered clinical trials. There is paucity of data regarding the molecular changes downstream of UBE3A hampering elucidation of disease therapeutics and biomarkers. Notably, UBE3A plays an important role in the nucleus but its targets have yet to be elucidated. Using proteomics, we assessed changes during postnatal cortical development in an AS mouse model. Pathway analysis revealed dysregulation of proteasomal and tRNA synthetase pathways at all postnatal brain developmental stages, while synaptic proteins were altered in adults. We confirmed pathway alterations in an adult AS rat model across multiple brain regions and highlighted region-specific differences. UBE3A reinstatement in AS model mice resulted in near complete and partial rescue of the proteome alterations in adolescence and adults, respectively, supporting the notion that restoration of UBE3A expression provides a promising therapeutic option. We show that the nuclear enriched transketolase (TKT), one of the most abundantly altered proteins, is a novel direct UBE3A substrate and is elevated in the neuronal nucleus of rat brains and human iPSC-derived neurons. Taken together, our study provides a comprehensive map of UBE3A-driven proteome remodeling in AS across development and species, and corroborates an early UBE3A reinstatement as a viable therapeutic option. To support future disease and biomarker research, we present an accessible large-scale multi-species proteomic resource for the AS community ( https://www.angelman-proteome-project.org/ ).


Assuntos
Síndrome de Angelman , Proteômica , Síndrome de Angelman/tratamento farmacológico , Síndrome de Angelman/genética , Síndrome de Angelman/metabolismo , Animais , Modelos Animais de Doenças , Camundongos , Proteoma , Ratos , Transdução de Sinais , Ubiquitina-Proteína Ligases/genética
3.
Neurobiol Dis ; 155: 105398, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34019997

RESUMO

The role played by microglia has taken the center of the stage in the etiology of Alzheimer's disease (AD). Several genome-wide association studies carried out on large cohorts of patients have indeed revealed a large number of genetic susceptibility factors corresponding to genes involved in neuroinflammation and expressed specifically by microglia in the brain. Among these genes TREM2, a cell surface receptor expressed by microglia, arouses strong interest because its R47H variant confers a risk of developing AD comparable to the ε4 allele of the APOE gene. Since this discovery, a growing number of studies have therefore examined the role played by TREM2 in the evolution of amyloid plaques and neurofibrillary tangles, the two brain lesions characteristic of AD. Many studies report conflicting results, reflecting the complex nature of microglial activation in AD. Here, we investigated the impact of TREM2 deficiency in the THY-Tau22 transgenic line, a well-characterized model of tauopathy. Our study reports an increase in the severity of tauopathy lesions in mice deficient in TREM2 occurring at an advanced stage of the pathology. This exacerbation of pathology was associated with a reduction in microglial activation indicated by typical morphological features and altered expression of specific markers. However, it was not accompanied by any further changes in memory performance. Our longitudinal study confirms that a defect in microglial TREM2 signaling leads to an increase in neuronal tauopathy occurring only at late stages of the disease.


Assuntos
Modelos Animais de Doenças , Glicoproteínas de Membrana/deficiência , Microglia/metabolismo , Receptores Imunológicos/deficiência , Tauopatias/metabolismo , Antígenos Thy-1/genética , Proteínas tau/genética , Animais , Feminino , Humanos , Estudos Longitudinais , Masculino , Aprendizagem em Labirinto/fisiologia , Glicoproteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Microglia/patologia , Receptores Imunológicos/genética , Tauopatias/genética , Tauopatias/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...