Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nanomedicine ; 57: 102742, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38460654

RESUMO

Modification of T-lymphocytes, which are capable of paracellular transmigration is a promising trend in modern personalized medicine. However, the delivery of required concentrations of functionalized T-cells to the target tissues remains a problem. We describe a novel method to functionalize T-cells with magnetic nanocapsules and target them with electromagnetic tweezers. T-cells were modified with the following magnetic capsules: Parg/DEX (150 nm), BSA/TA (300 nm), and BSA/TA (500 nm). T-cells were magnetonavigated in a phantom blood vessel capillary in cultural medium and in whole blood. The permeability of tumor tissues to captured T-cells was analyzed by magnetic delivery of modified T-cells to spheroids formed from 4T1 breast cancer cells. The dynamics of T-cell motion under a magnetic field gradient in model environments were analyzed by particle image velocimetry. The magnetic properties of the nanocomposite capsules and magnetic T-cells were measured. The obtained results are promising for biomedical applications in cancer immunotherapy.


Assuntos
Nanocápsulas , Nanocompostos , Sistemas de Liberação de Medicamentos/métodos , Linfócitos T , Fenômenos Eletromagnéticos , Cápsulas
2.
Biomater Adv ; 158: 213759, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38227987

RESUMO

While microbubbles (MB) are routinely used for ultrasound (US) imaging, magnetic MB are increasingly explored as they can be guided to specific sites of interest by applied magnetic field gradient. This requires the MB shell composition tuning to prolong MB stability and provide functionalization capabilities with magnetic nanoparticles. Hence, we developed air-filled MB stabilized by a protein-polymer complex of bovine serum albumin (BSA) and poly-L-arginine (pArg) of different molecular weights, showing that pArg of moderate molecular weight distribution (15-70 kDa) enabled MB with greater stability and acoustic response while preserving MB narrow diameters and the relative viability of THP-1 cells after 48 h of incubation. After MB functionalization with superparamagnetic iron oxide nanoparticles (SPION), magnetic moment values provided by single MB confirmed the sufficient SPION deposition onto BSA + pArg MB shells. During MB magnetic navigation in a blood vessel mimicking phantom with magnetic tweezers and in a Petri dish with adherent mouse renal carcinoma cell line, we demonstrated the effectiveness of magnetic MB localization in the desired area by magnetic field gradient. Magnetic MB co-localization with cells was further exploited for effective doxorubicin delivery with drug-loaded MB. Taken together, these findings open new avenues in control over albumin MB properties and magnetic navigation of SPION-loaded MB, which can envisage their applications in diagnostic and therapeutic needs.


Assuntos
Nanopartículas de Magnetita , Peptídeos , Camundongos , Animais , Nanopartículas de Magnetita/uso terapêutico , Microbolhas , Soroalbumina Bovina , Nanopartículas Magnéticas de Óxido de Ferro
3.
Polymers (Basel) ; 14(24)2022 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-36559806

RESUMO

In this work, the preparation procedure and properties of anionic magnetic microgels loaded with antitumor drug doxorubicin are described. The functional microgels were produced via the in situ formation of iron nanoparticles in an aqueous dispersion of polymer microgels based on poly(N-isopropylacrylamide-co-acrylic acid) (PNIPAM-PAA). The composition and morphology of the resulting composite microgels were studied by means of X-ray diffraction, Mössbauer spectroscopy, IR spectroscopy, scanning electron microscopy, atomic-force microscopy, laser microelectrophoresis, and static and dynamic light scattering. The forming nanoparticles were found to be ß-FeO(OH). In physiological pH and ionic strength, the obtained composite microgels were shown to possess high colloid stability. The average size of the composites was 200 nm, while the zeta-potential was -27.5 mV. An optical tweezers study has demonstrated the possibility of manipulation with microgel using external magnetic fields. Loading of the composite microgel with doxorubicin did not lead to any change in particle size and colloidal stability. Magnetic-driven interaction of the drug-loaded microgel with model cell membranes was demonstrated by fluorescence microscopy. The described magnetic microgels demonstrate the potential for the controlled delivery of biologically active substances.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA