Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
Int J Mol Sci ; 23(16)2022 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-36012332

RESUMO

The reason for the exceptional longevity of the naked mole rat (Heterocephalus glaber) remains a mystery to researchers. We assumed that evolutionarily, H. glaber acquired the ability to quickly stabilize the functioning of mitochondria and endoplasmic reticulum (ER) to adjust metabolism to external challenges. To test this, a comparison of the hepatic mitochondria and ER of H. glaber and C57BL/6 mice was done. Electron microscopy showed that 2-months-old mice have more developed rough ER (RER) than smooth ER (SER), occupying ~17 and 2.5% of the hepatocytic area correspondingly, and these values do not change with age. On the other hand, in 1-week-old H. glaber, RER occupies only 13% constantly decreasing with age, while SER occupies 35% in a 1-week-old animal, constantly rising with age. The different localization of mitochondria in H. glaber and mouse hepatocytes was confirmed by confocal and electron microscopy: while in H. glaber, mitochondria were mainly clustered around the nucleus and on the periphery of the cell, in mouse hepatocytes they were evenly distributed throughout the cell. We suggest that the noted structural and spatial features of ER and mitochondria in H. glaber reflect adaptive rearrangements aimed at greater tolerance of the cellular system to challenges, primarily hypoxia and endogenous and exogenous toxins. Different mechanisms of adaptive changes including an activated hepatic detoxification system as a hormetic response, are discussed considering the specific metabolic features of the naked mole rat.


Assuntos
Mitocôndrias , Ratos-Toupeira , Animais , Retículo Endoplasmático , Hepatócitos , Hipertrofia , Camundongos , Camundongos Endogâmicos C57BL
2.
Aging (Albany NY) ; 13(22): 24524-24541, 2021 11 28.
Artigo em Inglês | MEDLINE | ID: mdl-34839281

RESUMO

The authors examined the ultrastructure of mitochondrial apparatus of skeletal muscles of naked mole rats (Heterocephalus glaber) from the age of 6 months to 11 years. The obtained results have demonstrated that the mitochondria in skeletal muscles of naked mole rats aged below 5 years is not well-developed and represented by few separate small mitochondria. Mitochondrial reticulum is absent. Starting from the age of 5 years, a powerful mitochondrial structure is developed. By the age of 11 years, it become obvious that the mitochondrial apparatus formed differs from that in the skeletal muscle of adult rats and mice, but resembles that of cardiomyocytes of rats or naked mole rats cardiomyocytes. From the age of 6 months to 11 years, percentage area of mitochondria in the skeletal muscle of naked mole rat is increasing by five times. The growth of mitochondria is mainly driven by increased number of organelles. Such significant growth of mitochondria is not associated with any abnormal changes in mitochondrial ultrastructure. We suppose that specific structure of mitochondrial apparatus developed in the skeletal muscle of naked mole rats by the age of 11 years is necessary for continual skeletal muscle activity of these small mammals burrowing very long holes in stony earth, resembling continual activity of heart muscle. In any case, ontogenesis of naked mole rat skeletal muscles is much slower than of rats and mice (one more example of neoteny).


Assuntos
Envelhecimento/fisiologia , Mitocôndrias/ultraestrutura , Músculo Esquelético/ultraestrutura , Fenômenos Fisiológicos Musculoesqueléticos , Animais , Microscopia Eletrônica , Ratos-Toupeira/fisiologia
3.
Cells ; 9(3)2020 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-32183238

RESUMO

Electron microscopic study of cardiomyocytes taken from healthy Wistar and OXYS rats and naked mole rats (Heterocephalus glaber) revealed mitochondria in nuclei that lacked part of the nuclear envelope. The direct interaction of mitochondria with nucleoplasm is shown. The statistical analysis of the occurrence of mitochondria in cardiomyocyte nuclei showed that the percentage of nuclei with mitochondria was roughly around 1%, and did not show age and species dependency. Confocal microscopy of normal rat cardiac myocytes revealed a branched mitochondrial network in the vicinity of nuclei with an organization different than that of interfibrillar mitochondria. This mitochondrial network was energetically functional because it carried the membrane potential that responded by oscillatory mode after photodynamic challenge. We suggest that the presence of functional mitochondria in the nucleus is not only a consequence of certain pathologies but rather represents a normal biological phenomenon involved in mitochondrial/nuclear interactions.


Assuntos
Núcleo Celular/fisiologia , Microscopia Eletrônica/métodos , Mitocôndrias Cardíacas/fisiologia , Membrana Nuclear/fisiologia , Animais , Microscopia Confocal , Modelos Animais , Ratos-Toupeira , Ratos , Ratos Wistar
4.
Oncotarget ; 7(49): 80208-80222, 2016 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-27852065

RESUMO

Dry eye syndrome is an eye disorder affecting many people at an old age. Because dry eye syndrome is accelerated by aging, a useful approach to the prevention of this syndrome may be an intervention into the aging process. Previously, we showed that the mitochondria-targeted antioxidant SkQ1 delays manifestations of aging and inhibits the development of age-related diseases including dry eye syndrome. Nevertheless, the link between SkQ1's effects and its suppression of age-related changes in the lacrimal gland remains unclear. Here we demonstrated that dietary supplementation with SkQ1 (250 nmol/[kg body weight] daily) starting at age 1.5 months significantly alleviated the pathological changes in lacrimal glands of Wistar rats by age 24 months. By this age, lacrimal glands underwent dramatic deterioration of the ultrastructure that was indicative of irreversible disturbances in these glands' functioning. In contrast, in SkQ1-treated rats, the ultrastructure of the lacrimal gland was similar to that in much younger rats. Morphometric analysis of electron-microscopic specimens of lacrimal glands revealed the presence of numerous secretory granules in acinar cells and a significant increase in the number of operating intercalary ducts. Our results confirm that dietary supplementation with SkQ1 is a promising approach to healthy ageing and to prevention of aberrations in the lacrimal gland that underlie dry eye syndrome.


Assuntos
Envelhecimento , Antioxidantes/farmacologia , Síndromes do Olho Seco/prevenção & controle , Aparelho Lacrimal/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Plastoquinona/análogos & derivados , Fatores Etários , Envelhecimento/metabolismo , Envelhecimento/patologia , Animais , Síndromes do Olho Seco/metabolismo , Síndromes do Olho Seco/patologia , Aparelho Lacrimal/metabolismo , Aparelho Lacrimal/ultraestrutura , Masculino , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Plastoquinona/farmacologia , Ratos Wistar
5.
Aging (Albany NY) ; 6(2): 140-8, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24519884

RESUMO

A comparative electron-microscopic study of ultrastructure of mitochondria in skeletal muscles of the 3- and 24-month-old Wistar and OXYS rats revealed age-dependent changes in both general organization of the mitochondrial reticulum and ultrastructure of mitochondria. The most pronounced ultrastructure changes were detected in the OXYS rats suffering from permanent oxidative stress. In the OXYS rats, significant changes in mitochondrial ultrastructure were detected already at the age of 3 months. Among them, there were the appearance of megamitochondria and reduction of cristae resulting in formation of cristae-free regions inside mitochondria. In the 24-month-old OXYS rats, mitochondrial reticulum was completely destroyed. In the isotropic region of muscle fiber, only small solitary mitochondria were present. There appeared regions of lysed myofibrils as well as vast regions filled with autophagosomes. A mitochondrial antioxidant SkQ1 (given to rats with food daily in the dose of 250 nmol/kg of body weight for 5 months beginning from the age of 19 months) prevented development of age-dependent destructive changes in both the Wistar and OXYS rats.


Assuntos
Mitocôndrias/efeitos dos fármacos , Mitocôndrias/ultraestrutura , Fibras Musculares Esqueléticas/ultraestrutura , Plastoquinona/análogos & derivados , Sarcopenia/tratamento farmacológico , Animais , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Masculino , Plastoquinona/farmacologia , Plastoquinona/uso terapêutico , Distribuição Aleatória , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...