Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 68
Filtrar
1.
Nature ; 627(8002): 67-72, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38448698

RESUMO

Ordinary metals contain electron liquids within well-defined 'Fermi' surfaces at which the electrons behave as if they were non-interacting. In the absence of transitions to entirely new phases such as insulators or superconductors, interactions between electrons induce scattering that is quadratic in the deviation of the binding energy from the Fermi level. A long-standing puzzle is that certain materials do not fit this 'Fermi liquid' description. A common feature is strong interactions between electrons relative to their kinetic energies. One route to this regime is special lattices to reduce the electron kinetic energies. Twisted bilayer graphene1-4 is an example, and trihexagonal tiling lattices (triangular 'kagome'), with all corner sites removed on a 2 × 2 superlattice, can also host narrow electron bands5 for which interaction effects would be enhanced. Here we describe spectroscopy revealing non-Fermi-liquid behaviour for the ferromagnetic kagome metal Fe3Sn2 (ref. 6). We discover three C3-symmetric electron pockets at the Brillouin zone centre, two of which are expected from density functional theory. The third and most sharply defined band emerges at low temperatures and binding energies by means of fractionalization of one of the other two, most likely on the account of enhanced electron-electron interactions owing to a flat band predicted to lie just above the Fermi level. Our discovery opens the topic of how such many-body physics involving flat bands7,8 could differ depending on whether they arise from lattice geometry or from strongly localized atomic orbitals9,10.

2.
Nat Commun ; 14(1): 6127, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37779120

RESUMO

The interplay between spin-orbit interaction and magnetic order is one of the most active research fields in condensed matter physics and drives the search for materials with novel, and tunable, magnetic and spin properties. Here we report on a variety of unique and unexpected observations in thin multiferroic Ge1-xMnxTe films. The ferrimagnetic order parameter in this ferroelectric semiconductor is found to switch direction under magnetostochastic resonance with current pulses many orders of magnitude lower as for typical spin-orbit torque systems. Upon a switching event, the magnetic order spreads coherently and collectively over macroscopic distances through a correlated spin-glass state. Utilizing these observations, we apply a novel methodology to controllably harness this stochastic magnetization dynamics.

3.
Nat Commun ; 14(1): 174, 2023 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-36635276

RESUMO

Understanding chemical reactivity and magnetism of 3d transition metal nanoparticles is of fundamental interest for applications in fields ranging from spintronics to catalysis. Here, we present an atomistic picture of the early stage of the oxidation mechanism and its impact on the magnetism of Co nanoparticles. Our experiments reveal a two-step process characterized by (i) the initial formation of small CoO crystallites across the nanoparticle surface, until their coalescence leads to structural completion of the oxide shell passivating the metallic core; (ii) progressive conversion of the CoO shell to Co3O4 and void formation due to the nanoscale Kirkendall effect. The Co nanoparticles remain highly reactive toward oxygen during phase (i), demonstrating the absence of a pressure gap whereby a low reactivity at low pressures is postulated. Our results provide an important benchmark for the development of theoretical models for the chemical reactivity in catalysis and magnetism during metal oxidation at the nanoscale.

4.
J Mater Sci ; 57(42): 19872-19881, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36398095

RESUMO

Charge mediated magnetoelectric coupling mechanism in artificial multiferroics originates from interfacial charge modulation or ionic movement at a magnetic/dielectric interface. Despite the existence of several dielectric/ferroelectric systems that can be used in charge mediated artificial multiferroic systems, producing suitable systems with fast time responses still remains a challenge. Here we characterize the frequency response of stoichiometric and non-stoichiometric (low strain) Si 3 N 4 thin film membranes, which can potentially be used as the dielectric layer in magnetoelectric devices, to determine the impact of depletion layers, charge traps and defect mobility on the high frequency (up to 100 MHz) interfacial charge modulation via screening. We find that the dielectric/magnetoelectric properties are largely dominated by extrinsic doping due to point defects. In particular, we find that non-stoichiometric Si 3 N 4 has a dielectric behaviour that is dominated by charge traps and/or mobile ions. However, stoichiometric Si 3 N 4 membranes show a reversible response to the applied bias electric field consistent with a doped semiconductor behaviour; at high frequencies, the intrinsic dielectric behaviour is reached, indicating that it may be suitable for high frequency magnetoelectric device applications. Our results show that minimising the impact of defects on the dielectric properties of magnetoelectric heterostructures is an important prerequisite for obtaining a high frequency magnetoelectric response. Supplementary Information: The online version contains supplementary material available at 10.1007/s10853-022-07832-2.

5.
Phys Rev Lett ; 125(11): 117208, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32975965

RESUMO

We investigate spin dynamics of microstates in artificial spin ice (ASI) in Ni_{81}Fe_{19} nanomagnets arranged in an interconnected kagome lattice using microfocus Brillouin light scattering, broadband ferromagnetic resonance, magnetic force microscopy, x-ray photoemission electron microscopy, and simulations. We experimentally reconfigure microstates in ASI using a 2D vector field protocol and apply microwave-assisted switching to intentionally trigger reversal. Our work is key for the creation of avalanches inside the kagome ASI and reprogrammable magnonics based on ASIs.

6.
Nature ; 565(7738): 209-212, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30602792

RESUMO

The Einstein-de Haas effect was originally observed in a landmark experiment1 demonstrating that the angular momentum associated with aligned electron spins in a ferromagnet can be converted to mechanical angular momentum by reversing the direction of magnetization using an external magnetic field. A related problem concerns the timescale of this angular momentum transfer. Experiments have established that intense photoexcitation in several metallic ferromagnets leads to a drop in magnetization on a timescale shorter than 100 femtoseconds-a phenomenon called ultrafast demagnetization2-4. Although the microscopic mechanism for this process has been hotly debated, the key question of where the angular momentum goes on these femtosecond timescales remains unanswered. Here we use femtosecond time-resolved X-ray diffraction to show that most of the angular momentum lost from the spin system upon laser-induced demagnetization of ferromagnetic iron is transferred to the lattice on sub-picosecond timescales, launching a transverse strain wave that propagates from the surface into the bulk. By fitting a simple model of the X-ray data to simulations and optical data, we estimate that the angular momentum transfer occurs on a timescale of 200 femtoseconds and corresponds to 80 per cent of the angular momentum that is lost from the spin system. Our results show that interaction with the lattice has an essential role in the process of ultrafast demagnetization in this system.

7.
Struct Dyn ; 5(4): 044502, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-30175157

RESUMO

The laser-driven ultrafast demagnetization effect is one of the long-standing problems in solid-state physics. The time scale is given not only by the transfer of energy, but also by the transport of angular momentum away from the spin system. Through a double-pulse experiment resembling two-dimensional spectroscopy, we separate the different pathways by their nonlinear properties. We find (a) that the loss of magnetization within 400 fs is not affected by the previous excitations (linear process), and (b) we observe a picosecond demagnetization contribution that is strongly affected by the previous excitations. Our experimental approach is useful not only for studying femtosecond spin dynamics, but can also be adapted to other problems in solid-state dynamics.

8.
Opt Express ; 26(9): 12242-12256, 2018 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-29716137

RESUMO

While the industrial implementation of extreme ultraviolet lithography for upcoming technology nodes is becoming ever more realistic, a number of challenges have yet to be overcome. Among them is the need for actinic mask inspection. We report on reflective-mode lensless imaging of a patterned multi-layer mask sample at extreme ultraviolet wavelength that provides a finely structured defect map of the sample under test. Here, we present the imaging results obtained using ptychography in reflection mode at 6° angle of incidence from the surface normal and 13.5 nm wavelength. Moreover, an extended version of the difference map algorithm is employed that substantially enhances the reconstruction quality by taking into account both long and short-term variations of the incident illumination.

9.
Nat Commun ; 8(1): 1583, 2017 11 17.
Artigo em Inglês | MEDLINE | ID: mdl-29146896

RESUMO

Exploiting multiferroic BiFeO3 thin films in spintronic devices requires deterministic and robust control of both internal magnetoelectric coupling in BiFeO3, as well as exchange coupling of its antiferromagnetic order to a ferromagnetic overlayer. Previous reports utilized approaches based on multi-step ferroelectric switching with multiple ferroelectric domains. Because domain walls can be responsible for fatigue, contain localized charges intrinsically or via defects, and present problems for device reproducibility and scaling, an alternative approach using a monodomain magnetoelectric state with single-step switching is desirable. Here we demonstrate room temperature, deterministic and robust, exchange coupling between monodomain BiFeO3 films and Co overlayer that is intrinsic (i.e., not dependent on domain walls). Direct coupling between BiFeO3 antiferromagnetic order and Co magnetization is observed, with ~ 90° in-plane Co moment rotation upon single-step switching that is reproducible for hundreds of cycles. This has important consequences for practical, low power non-volatile magnetoelectric devices utilizing BiFeO3.

10.
J Synchrotron Radiat ; 24(Pt 5): 963-974, 2017 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-28862618

RESUMO

EIGER is a single-photon-counting hybrid pixel detector developed at the Paul Scherrer Institut, Switzerland. It is designed for applications at synchrotron light sources with photon energies above 5 keV. Features of EIGER include a small pixel size (75 µm × 75 µm), a high frame rate (up to 23 kHz), a small dead-time between frames (down to 3 µs) and a dynamic range up to 32-bit. In this article, the use of EIGER as a detector for electrons in low-energy electron microscopy (LEEM) and photoemission electron microscopy (PEEM) is reported. It is demonstrated that, with only a minimal modification to the sensitive part of the detector, EIGER is able to detect electrons emitted or reflected by the sample and accelerated to 8-20 keV. The imaging capabilities are shown to be superior to the standard microchannel plate detector for these types of applications. This is due to the much higher signal-to-noise ratio, better homogeneity and improved dynamic range. In addition, the operation of the EIGER detector is not affected by radiation damage from electrons in the present energy range and guarantees more stable performance over time. To benchmark the detector capabilities, LEEM experiments are performed on selected surfaces and the magnetic and electronic properties of individual iron nanoparticles with sizes ranging from 8 to 22 nm are detected using the PEEM endstation at the Surface/Interface Microscopy (SIM) beamline of the Swiss Light Source.

12.
Nat Nanotechnol ; 11(5): 444-8, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26780660

RESUMO

Facing the ever-growing demand for data storage will most probably require a new paradigm. Nanoscale magnetic skyrmions are anticipated to solve this issue as they are arguably the smallest spin textures in magnetic thin films in nature. We designed cobalt-based multilayered thin films in which the cobalt layer is sandwiched between two heavy metals and so provides additive interfacial Dzyaloshinskii-Moriya interactions (DMIs), which reach a value close to 2 mJ m(-2) in the case of the Ir|Co|Pt asymmetric multilayers. Using a magnetization-sensitive scanning X-ray transmission microscopy technique, we imaged small magnetic domains at very low fields in these multilayers. The study of their behaviour in a perpendicular magnetic field allows us to conclude that they are actually magnetic skyrmions stabilized by the large DMI. This discovery of stable sub-100 nm individual skyrmions at room temperature in a technologically relevant material opens the way for device applications in the near future.

13.
J Phys Condens Matter ; 27(50): 500301, 2015 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-26613520
14.
Rev Sci Instrum ; 86(8): 083702, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26329198

RESUMO

Manipulating magnetisation by the application of an electric field in magnetoelectric multiferroics represents a timely issue due to the potential applications in low power electronics and the novel physics involved. Thanks to its element sensitivity and high spatial resolution, X-ray photoemission electron microscopy is a uniquely suited technique for the investigation of magnetoelectric coupling in multiferroic materials. In this work, we present a setup that allows for the application of in situ electric and magnetic fields while the sample is analysed in the microscope. As an example of the performances of the setup, we present measurements on Ni/Pb(Mg(0.66)Nb(0.33))O3-PbTiO3 and La(0.7)Sr(0.3)MnO3/PMN-PT artificial multiferroic nanostructures.

15.
Ultramicroscopy ; 159 Pt 3: 513-9, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26051656

RESUMO

In situ X-ray photo-emission electron microscopy is used to investigate the magnetic properties of iron nanoparticles deposited on different single crystalline substrates, including Si(001), Cu(001), W(110), and NiO(001). We find that, in our room temperature experiments, Fe nanoparticles deposited on Si(001) and Cu(001) show both superparamagnetic and magnetically stable (blocked) ferromagnetic states, while Fe nanoparticles deposited on W(110) and NiO(001) show only superparamagnetic behaviour. The dependence of the magnetic behaviour of the Fe nanoparticles on the contact surface is ascribed to the different interfacial bonding energies, higher for W and NiO, and to a possible relaxation of point defects within the core of the nanoparticles on these substrates, that have been suggested to stabilise the ferromagnetic state at room temperature when deposited on more inert surfaces such as Si and Cu.

16.
J Phys Condens Matter ; 27(12): 123001, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25721578

RESUMO

We review recent advances in our understanding of interfacial phenomena that emerge when dissimilar materials are brought together at atomically sharp and coherent interfaces. In particular, we focus on phenomena that are intrinsic to the interface and review recent work carried out on perovskite manganites interfaces, a class of complex oxides whose rich electronic properties have proven to be a useful playground for the discovery and prediction of novel phenomena.

17.
J Phys Condens Matter ; 26(45): 456003, 2014 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-25336527

RESUMO

We investigate the effect of electric current pulse injection on domain walls in La(0.7)Sr(0.3)MnO(3) (LSMO) half-ring nanostructures by high resolution x-ray magnetic microscopy at room temperature. Due to the easily accessible Curie temperature of LSMO, we can employ reasonable current densities to induce the Joule heating necessary to observe effects such as hopping of the domain walls between different pinning sites and nucleation/annihilation events. Such effects are the dominant features close to the Curie temperature, while spin torque is found to play a small role close to room temperature. We are also able to observe thermally activated domain wall transformations and we find that, for the analyzed geometries, the vortex domain wall configuration is energetically favored, in agreement with micromagnetic simulations.


Assuntos
Lantânio/química , Fenômenos Magnéticos , Compostos de Manganês/química , Microscopia , Nanoestruturas/química , Óxidos/química , Estrôncio/química , Condutividade Elétrica , Temperatura , Raios X
18.
Phys Chem Chem Phys ; 16(48): 26624-30, 2014 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-25255452

RESUMO

We present an in situ experimental investigation of the magnetic and electronic properties of individual iron nanoparticles with sizes ranging from 8 to 22 nm as a function of oxygen exposure (0-80 L), using X-ray photoemission electron microscopy. The X-ray absorption spectroscopy results show that, irrespective of size and magnetic state, the early stages of the Fe nanoparticle oxidation occur through the initial formation of a non-magnetic FeO-like layer, followed by a progressive transformation of the latter to Fe3O4. At 80 L, the metallic iron core and the outer Fe3O4 shell are separated by a thin FeO layer. Our data suggest that the outer Fe3O4 layer has either a magnetic order that significantly differs from the respective bulk or that the FeO-like layer is responsible for a magnetic decoupling between the Fe3O4 shell and the iron core. Moreover, we find that the recently observed blocked magnetic state in the pure metallic iron nanoparticles persists upon oxygen exposure, demonstrating that the enhanced magnetic energy barriers do not originate from the free surface of the nanoparticles.

19.
J Phys Condens Matter ; 25(17): 176004, 2013 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-23567900

RESUMO

We study the effect of magnetocrystalline anisotropy on the magnetic configurations of La0.7Sr0.3MnO3 bar and triangle elements using photoemission electron microscopy imaging. The dominant remanent state is a low energy flux-closure state for both thin (15 nm) and thick (50 nm) elements. The magnetocrystalline anisotropy, which competes with the dipolar energy, causes a strong modification of the spin configuration in the thin elements, depending on the shape, size and orientation of the structures. We investigate the magnetic switching processes and observe in triangular shaped elements a displacement of the vortex core along the easy axis for an external magnetic field applied close to the hard axis, which is well reproduced by micromagnetic simulations.

20.
Opt Express ; 21(25): 30563-72, 2013 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-24514633

RESUMO

Soft X-ray holography is a recently developed imaging technique with sub-50 nm spatial resolution. Key advantages of this technique are magnetic and elemental sensitivity, compatibility with imaging at free electron laser facilities, and immunity to in-situ sample excitations and sample drift, which enables the reliable detection of relative changes between two images with a precision of a few nanometers. In X-ray holography, the main part of the experimental setup is integrated in the sample, which consequently requires a large number of fabrication steps. Here we present a generic design and an automatable fabrication process for samples suitable, and optimized for, efficient high resolution X-ray holographic dynamic imaging. The high efficiency of the design facilitates the acquisition of magnetic images in a few minutes and makes fully automatic image reconstruction possible.


Assuntos
Holografia/instrumentação , Holografia/métodos , Interpretação de Imagem Radiográfica Assistida por Computador/instrumentação , Interpretação de Imagem Radiográfica Assistida por Computador/métodos , Desenho Assistido por Computador , Desenho de Equipamento , Análise de Falha de Equipamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...