Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros










Base de dados
Assunto principal
Intervalo de ano de publicação
1.
Adv Mater ; : e2311157, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402421

RESUMO

Understanding the magnetic and ferroelectric ordering of magnetoelectric multiferroic materials at the nanoscale necessitates a versatile imaging method with high spatial resolution. Here, soft X-ray ptychography is employed to simultaneously image the ferroelectric and antiferromagnetic domains in an 80 nm thin freestanding film of the room-temperature multiferroic BiFeO3 (BFO). The antiferromagnetic spin cycloid of period 64 nm is resolved by reconstructing the corresponding resonant elastic X-ray scattering in real space and visualized together with mosaic-like ferroelectric domains in a linear dichroic contrast image at the Fe L3 edge. The measurements reveal a near perfect coupling between the antiferromagnetic and ferroelectric ordering by which the propagation direction of the spin cycloid is locked orthogonally to the ferroelectric polarization. In addition, the study evinces both a preference for in-plane propagation of the spin cycloid and changes of the ferroelectric polarization by 71° between multiferroic domains in the epitaxial strain-free, freestanding BFO film. The results provide a direct visualization of the strong magnetoelectric coupling in BFO and of its fine multiferroic domain structure, emphasizing the potential of ptychographic imaging for the study of multiferroics and non-collinear magnetic materials with soft X-rays.

2.
Nat Commun ; 15(1): 694, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38267459

RESUMO

Atomically precise hydrogen desorption lithography using scanning tunnelling microscopy (STM) has enabled the development of single-atom, quantum-electronic devices on a laboratory scale. Scaling up this technology to mass-produce these devices requires bridging the gap between the precision of STM and the processes used in next-generation semiconductor manufacturing. Here, we demonstrate the ability to remove hydrogen from a monohydride Si(001):H surface using extreme ultraviolet (EUV) light. We quantify the desorption characteristics using various techniques, including STM, X-ray photoelectron spectroscopy (XPS), and photoemission electron microscopy (XPEEM). Our results show that desorption is induced by secondary electrons from valence band excitations, consistent with an exactly solvable non-linear differential equation and compatible with the current 13.5 nm (~92 eV) EUV standard for photolithography; the data imply useful exposure times of order minutes for the 300 W sources characteristic of EUV infrastructure. This is an important step towards the EUV patterning of silicon surfaces without traditional resists, by offering the possibility for parallel processing in the fabrication of classical and quantum devices through deterministic doping.

3.
ACS Appl Mater Interfaces ; 16(3): 4138-4149, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38216138

RESUMO

We report the observation of fully magnetically polarized ultrathin La0.8Sr0.2MnO3 films by using LaMnO3 and La0.45Sr0.55MnO3 buffer layers grown epitaxially on SrTiO3(001) substrates by molecular beam epitaxy. Specifically, we show that La0.8Sr0.2MnO3 films grown on 12-unit-cell LaMnO3 have bulk-like magnetic moments starting from a single unit cell thickness, while for the 15-unit-cell La0.45Sr0.55MnO3 buffer layer, the La0.8Sr0.2MnO3 transitions from an antiferromagnetic state to a fully spin-polarized ferromagnetic state at 4 unit cells. The magnetic results are confirmed by X-ray magnetic circular dichroism, while linear dichroic measurements carried out for the La0.8Sr0.2MnO3/La0.45Sr0.55MnO3 series show the presence of an orbital reorganization at the transition from the antiferromagnetic to ferromagnetic state corresponding to a change from a preferred in-plane orbital hole occupancy, characteristic of the A-type antiferromagnetic state of La0.45Sr0.55MnO3, to preferentially out of plane. We interpret our findings in terms of the different electronic charge transfers between the adjacent layers, confined to the unit cell in the case of insulating LaMnO3 and extended to a few unit cells in the case of conducting La0.45Sr0.55MnO3. Our work demonstrates an approach to growing ultrathin mixed-valence manganite films that are fully magnetically polarized from the single unit cell, paving the way to fully exploring the unique electronic properties of this class of strongly correlated oxide materials.

4.
ACS Appl Mater Interfaces ; 15(18): 22367-22376, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37092734

RESUMO

We report the magnitude of the induced magnetic moment in CVD-grown epitaxial and rotated-domain graphene in proximity with a ferromagnetic Ni film, using polarized neutron reflectivity (PNR) and X-ray magnetic circular dichroism (XMCD). The XMCD spectra at the C K-edge confirm the presence of a magnetic signal in the graphene layer, and the sum rules give a magnetic moment of up to ∼0.47 µB/C atom induced in the graphene layer. For a more precise estimation, we conducted PNR measurements. The PNR results indicate an induced magnetic moment of ∼0.41 µB/C atom at 10 K for epitaxial and rotated-domain graphene. Additional PNR measurements on graphene grown on a nonmagnetic Ni9Mo1 substrate, where no magnetic moment in graphene is measured, suggest that the origin of the induced magnetic moment is due to the opening of the graphene's Dirac cone as a result of the strong C pz-Ni 3d hybridization.

5.
Materials (Basel) ; 14(23)2021 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-34885290

RESUMO

Prior studies of the thin film deposition of the metal-organic compound of Fe(pz)Pt[CN]4 (pz = pyrazine) using the matrix-assisted pulsed laser evaporation (MAPLE) method, provided evidence for laser-induced decomposition of the molecular structure resulting in a significant downshift of the spin transition temperature. In this work we report new results obtained with a tunable pulsed laser, adjusted to water resonance absorption band with a maximum at 3080 nm, instead of 1064 nm laser, to overcome limitations related to laser-target interactions. Using this approach, we obtain uniform and functional thin films of Fe(pz)Pt[CN]4 nanoparticles with an average thickness of 135 nm on Si and/or glass substrates. X-ray diffraction measurements show the crystalline structure of the film identical to that of the reference material. The temperature-dependent Raman spectroscopy indicates the spin transition in the temperature range of 275 to 290 K with 15 ± 3 K hysteresis. This result is confirmed by UV-Vis spectroscopy revealing an absorption band shift from 492 to 550 nm related to metal-to-ligand-charge-transfer (MLCT) for high and low spin states, respectively. Spin crossover is also observed with X-ray absorption spectroscopy, but due to soft X-ray-induced excited spin state trapping (SOXIESST) the transition is not complete and shifted towards lower temperatures.

6.
ACS Appl Mater Interfaces ; 13(36): 42670-42681, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34491718

RESUMO

All-solid-state lithium batteries are a promising alternative for next-generation safe energy storage devices, provided that parasitic side reactions and the resulting hindrances in ionic transport at the electrolyte-electrode interface can be overcome. Motivated by the need for a fundamental understanding of such an interface, we present here real-time measurements of the (electro-)chemical reactivity and local surface potential at the electrified interface (Li2S)3-P2S5 (LPS) and LiCoO2 (LCO) using operando X-ray photoelectron spectroscopy (XPS) supplemented by X-ray photoemission electron microscopy (XPEEM). We identify three main degradation mechanisms: (i) reactivity at open circuit potential leading to the formation of reduced Co in the +2 oxidation state at the LCO surface, detected in the Co L-edge, which is further increased upon cycling, (ii) onset of electrochemical oxidation of the LPS at 2.3 V vs InLix detected in the S 2p and P 2p core levels, and (iii) Co-ion diffusion into the LPS forming CoSx species at 3.3 V observed in both S 2p and Co 2p core levels. Concurrently, a local surface overpotential of 0.9 V caused by a negative localized charge layer is detected at the LPS-LCO interface. Furthermore, in agreement with previous theoretical results, the presence of a sharp potential drop at the interface between active materials and solid electrolyte is demonstrated in all-solid-state batteries.

7.
ACS Appl Mater Interfaces ; 13(2): 2547-2557, 2021 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-33426869

RESUMO

We experimentally determine the redox reactions during (de-)lithiation of the SnO2 working electrode cycled in (Li2S)3-P2S5 solid electrolyte by combining operando X-ray photoelectron spectroscopy and in situ X-ray absorption spectroscopy. Specifically, we have accurately determined the composition changes in the SnO2 working electrode upon cycling and identified the onset voltage formation of the various phases. Starting from the open-circuit potential, we find that, on lithiation, the Sn M-edge absorption spectra reveal unequivocally the formation of SnOx (x ≤ 1) and Li2SnO3 already at a potential of 1.6 V vs Li+/Li, while Sn 3d/Sn 4d, O 1s, and Li 1s core-level spectra show the formation of Sn0 and Li2O along the first potential plateau at 0.8 V vs Li+/Li and of Li8SnO6 at lower potentials. Below 0.6 V vs Li+/Li, an alloying reaction takes place until the end of the lithiation process at 0.05 V vs Li+/Li, as shown by the formation of LixSn. During delithiation, both the conversion and alloying reactions are found to be partially reversible, starting by the re-formation of Sn0 at 0.3 V vs Li+/Li and followed by the re-formation of Li8SnO6 and SnOx above 0.5 V vs Li+/Li. The conversion and alloying reactions are found to overlap during both lithiation and delithiation. Finally, we validate the theoretical prediction for the SnO2 conversion and alloy (de-)lithiation reactions and clarify the open questions about their reaction mechanism.

8.
J Chem Phys ; 152(18): 184705, 2020 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-32414241

RESUMO

The surface evolution of LiNi0.8Co0.15Al0.05O2 (NCA) and Li4Ti5O12 (LTO) electrodes cycled in a carbonate-based electrolyte was systematically investigated using the high lateral resolution and surface sensitivity of x-ray photoemission electron microscopy combined with x-ray absorption spectroscopy and x-ray photoelectron spectroscopy. On the cathode, we attest that the surface of the pristine particles is composed of adventitious Li2CO3 together with reduced Ni and Co in a +2 oxidation state, which is directly responsible for the overpotential observed during the first de-lithiation. This layer decomposes at 3.8 V vs Li+/Li, leaving behind a fresh surface with Ni and Co in a +3 oxidation state. The charge compensation upon Li+ extraction takes place above 4.0 V and is assigned to the oxidation of both Ni and oxygen, while Co remains in a +3 oxidation state during the whole redox process. We also identified the formation of an inactive surface layer already at 4.3 V, rich in reduced Ni and depleted in oxygen. However, at 4.9 V, NiO-like species are detected accompanied with reduced Co. Despite the highly oxidative potential, the surface of the cathode after long cycling is free of oxidized solvent byproducts but contains traces of LiPF6 byproducts (LiF and POxFy). On the LTO counter electrode, transition metals are detected only after long cycling vs NCA to 4.9 V as well as PVdF and LiPF6 byproducts originating from the cathode. Finally, harvested cycled electrodes prove that the influence of the crosstalk on the electrochemical performance of LTO is limited.

9.
Anal Chem ; 92(4): 3023-3031, 2020 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-31961659

RESUMO

X-ray photoemission electron microscopy (XPEEM), with its excellent spatial resolution, is a well-suited technique for elucidating the complex electrode-electrolyte interface reactions in Li-ion batteries. It provides element-specific contrast images that allows the study of the surface morphology and the identification of the various components of the composite electrode. It also enables the acquisition of local X-ray absorption spectra (XAS) on single particles of the electrode, such as the C and O K-edges to track the stability of carbonate-based electrolytes, F K-edge to study the electrolyte salt and binder stability, and the transition metal L-edges to gain insights into the oxidation/reduction processes of positive and negative active materials. Here we discuss the optimal measurement conditions for XPEEM studies of Li-ion battery systems, including (i) electrode preparation through mechanical pressing to reduce surface roughness for improved spatial resolution; (ii) corrections of the XAS spectra at the C K-edge to remove the carbon signal contribution originating from the X-ray optics; and (iii) procedures for minimizing the effect of beam damage. Examples from our recent work are provided to demonstrate the strength of XPEEM to solve challenging interface reaction mechanisms via post mortem measurements. Finally, we present a first XPEEM cell dedicated to operando/in situ experiments in all-solid-state batteries. Representative measurements were carried out on a graphite electrode cycled with LiI-incorporated sulfide-based electrolyte. This measurement demonstrates the strong competitive reactions between the lithiated graphite surface and the Li2O formation caused by the reaction of the intercalated lithium with the residual oxygen in the vacuum chamber. Moreover, we show the versatility of the operando XPEEM cell to investigate other active materials, for example, Li4Ti5O12.

10.
ACS Appl Mater Interfaces ; 12(7): 8780-8787, 2020 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-31877013

RESUMO

Hybrid semiconductor-ferromagnetic insulator heterostructures are interesting due to their tunable electronic transport, self-sustained stray field, and local proximitized magnetic exchange. In this work, we present lattice-matched hybrid epitaxy of semiconductor-ferromagnetic insulator InAs/EuS heterostructures and analyze the atomic-scale structure and their electronic and magnetic characteristics. The Fermi level at the InAs/EuS interface is found to be close to the InAs conduction band and in the band gap of EuS, thus preserving the semiconducting properties. Both neutron and X-ray reflectivity measurements show that the overall ferromagnetic component is mainly localized in the EuS thin film with a suppression of the Eu moment in the EuS layer nearest the InAs and magnetic moments outside the detection limits on the pure InAs side. This work presents a step toward realizing defect-free semiconductor-ferromagnetic insulator epitaxial hybrids for spin-lifted quantum and spintronic applications without external magnetic fields.

11.
ACS Appl Mater Interfaces ; 11(6): 6054-6065, 2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30661351

RESUMO

The understanding of surface reactions at the electrode-electrolyte interfaces has been a longstanding challenge in Li-ion batteries. X-ray photoemission electron microscopy is used to throw light on the disputed aspects of the surface reactivity of high-energy Li-rich Li1+ x(Ni aCo bMn1- a-b)1- xO2 (HE-NCM) cycled in an aprotic electrolyte against Li4Ti5O12 (LTO). Despite the highly oxidative potential of 5.1 V vs Li+/Li, there is no formation of a layer of oxidized electrolyte byproducts on any of the cathode particles; instead, a homogeneous organic-inorganic layer builds up across the particles of the LTO anode due to the electrolyte and poly(vinylidene fluoride) binder decomposition on HE-NCM. In addition, such a layer incorporates, already from the first charge, micrometer-sized agglomerates of transition metals (TMs). The presence of TMs on the anode is explained by the instability of the reduced Mn, Co, and Ni formed at the surface of HE-NCM mainly during delithiation. The reduced TMs are unstable and prone to be transported to the LTO, where they get further reduced to metallic-like clusters. These results demonstrate that a dual reaction takes place at the HE-NCM-electrolyte interface if subject to high potential, namely, degradation of the surface structure and decomposition of the electrolyte, affecting directly the anode surface through the migration-diffusion processes.

12.
ACS Nano ; 10(11): 9840-9851, 2016 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-27704780

RESUMO

Multiferroic composite materials combining ferroelectric and ferromagnetic order at room temperature have great potential for emerging applications such as four-state memories, magnetoelectric sensors, and microwave devices. In this paper, we report an effective and facile liquid phase deposition route to create multiferroic composite thin films involving the spin-coating of nanoparticle dispersions of BaTiO3, a well-known ferroelectric, and CoFe2O4, a highly magnetostrictive material. This approach offers great flexibility in terms of accessible film configurations (co-dispersed as well as layered films), thicknesses (from 100 nm to several µm) and composition (5-50 wt % CoFe2O4 with respect to BaTiO3) to address various potential applications. A detailed structural characterization proves that BaTiO3 and CoFe2O4 remain phase-separated with clear interfaces on the nanoscale after heat treatment, while electrical and magnetic studies indicate the simultaneous presence of both ferroelectric and ferromagnetic order. Furthermore, coupling between these orders within the films is demonstrated with voltage control of the magnetism at ambient temperatures.

13.
Adv Mater ; 22(26-27): 2900-18, 2010 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-20414887

RESUMO

The study of magnetoelectric materials has recently received renewed interest, in large part stimulated by breakthroughs in the controlled growth of complex materials and by the search for novel materials with functionalities suitable for next generation electronic devices. In this Progress Report, we present an overview of recent developments in the field, with emphasis on magnetoelectric coupling effects in complex oxide multiferroic composite materials.


Assuntos
Óxidos/química , Eletrônica , Óxido Ferroso-Férrico/química , Magnetismo , Nanoestruturas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...