Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
bioRxiv ; 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38370824

RESUMO

Sirtuins, a class of highly conserved histone/protein deacetylases, are heavily implicated in senescence and aging. The regulation of sirtuin proteins is tightly controlled both transcriptionally and translationally and via localization within the cell. While Sirtiun proteins are implicated with aging, how their levels are regulated during aging across cell types and eliciting tissue specific age-related cellular changes is unclear. Here, we demonstrate that SIRT7 is targeted for degradation during senescence and liver aging. To uncover the significance of SIRT7 loss, we performed proteomics analysis and identified a new SIRT7 interactor, the HMG box protein NUCKS1. We found that the NUCKS1 transcription factor is recruited onto chromatin during senescence and this is mediated by SIRT7 loss. Further, depletion of NUCKS1 delayed senescence upon DNA damage leading to reduction of inflammatory gene expression. Examination of NUCKS1 transcriptional regulation during senescence revealed gene targets of transcription factors NFKB1, RELA, and CEBPß. Consistently, in both Sirt7 KO mouse liver and in naturally aged livers, Nucks1 was recruited to chromatin. Further, Nucks1 was bound at promoters and enhancers of age-related genes, including transcription factor Rela, and, moreover, these bound sites had increased accessibility during aging. Overall, our results uncover NUCKS1 as a novel interactor of SIRT7, and show that loss of SIRT7 during senescence and liver aging promotes NUCKS1 chromatin binding to regulate metabolic and inflammatory genes.

2.
Front Cell Dev Biol ; 11: 1293122, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38020886

RESUMO

Pericentric heterochromatin (PCH) plays an essential role in the maintenance of genome integrity and alterations in PCH have been linked to cancer and aging. HP1 α, ß, and γ, are hallmarks of constitutive heterochromatin that are thought to promote PCH structure through binding to heterochromatin-specific histone modifications and interaction with a wide range of factors. Among the less understood components of PCH is the histone H2A variant H2A.Z, whose role in the organization and maintenance of PCH is poorly defined. Here we show that there is a complex interplay between H2A.Z and HP1 isoforms in PCH. While the loss of HP1α results in the accumulation of H2A.Z.1 in PCH, which is associated with a significant decrease in its mobile fraction, H2A.Z.1 binds preferentially to HP1ß in these regions. Of note, H2A.Z.1 downregulation results in increased heterochromatinization and instability of PCH, reflected by accumulation of the major epigenetic hallmarks of heterochromatin in these regions and increased frequency of chromosome aberrations related to centromeric/pericentromeric defects. Our studies support a role for H2A.Z in genome stability and unveil a key role of H2A.Z in the regulation of heterochromatin-specific epigenetic modifications through a complex interplay with the HP1 isoforms.

3.
Nucleic Acids Res ; 51(13): 6754-6769, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37309898

RESUMO

The Sirtuin family of NAD+-dependent enzymes plays an important role in maintaining genome stability upon stress. Several mammalian Sirtuins have been linked directly or indirectly to the regulation of DNA damage during replication through Homologous recombination (HR). The role of one of them, SIRT1, is intriguing as it seems to have a general regulatory role in the DNA damage response (DDR) that has not yet been addressed. SIRT1-deficient cells show impaired DDR reflected in a decrease in repair capacity, increased genome instability and decreased levels of γH2AX. Here we unveil a close functional antagonism between SIRT1 and the PP4 phosphatase multiprotein complex in the regulation of the DDR. Upon DNA damage, SIRT1 interacts specifically with the catalytical subunit PP4c and promotes its inhibition by deacetylating the WH1 domain of the regulatory subunits PP4R3α/ß. This in turn regulates γH2AX and RPA2 phosphorylation, two key events in the signaling of DNA damage and repair by HR. We propose a mechanism whereby during stress, SIRT1 signaling ensures a global control of DNA damage signaling through PP4.


Assuntos
Dano ao DNA , Sirtuína 1 , Animais , Humanos , Mamíferos/metabolismo , Monoéster Fosfórico Hidrolases , Fosforilação , Transdução de Sinais , Sirtuína 1/metabolismo
4.
Front Cell Dev Biol ; 11: 1281730, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38234684

RESUMO

p53 is a hallmark tumor suppressor due in part to its role in cell cycle progression, DNA damage repair, and cellular apoptosis; its protein activity interrelates with the Sirtuin family of proteins, major regulators of the cellular response to metabolic, oxidative, and genotoxic stress. In the recent years, mammalian Sirtuin 7 (SIRT7) has emerged as a pivotal regulator of p53, fine-tuning its activity in a context dependent manner. SIRT7 is frequently overexpressed in human cancer, yet its precise role in tumorigenesis and whether it involves p53 regulation is insufficiently understood. Depletion of SIRT7 in mice results in impaired embryo development and premature aging. While p53 activity has been suggested to contribute to tissue specific dysfunction in adult Sirt7 -/- mice, whether this also applies during development is currently unknown. By generating SIRT7 and p53 double-knockout mice, here we show that the demise of SIRT7-deficient embryos is not the result of p53 activity. Notably, although SIRT7 is commonly considered an oncogene, SIRT7 haploinsufficiency increases tumorigenesis in p53 knockout mice. Remarkably, in specific human tumors harboring p53 mutation, we identified that SIRT7 low expression correlates with poor patient prognosis. Transcriptomic analysis unveils a previously unrecognized interplay between SIRT7 and p53 in epithelial-to-mesenchymal transition (EMT) and extracellular matrix regulation with major implications for our understanding of embryonic development and tumor progression.

5.
Genes (Basel) ; 12(12)2021 11 23.
Artigo em Inglês | MEDLINE | ID: mdl-34946805

RESUMO

The immune system undergoes major changes with age that result in altered immune populations, persistent inflammation, and a reduced ability to mount effective immune responses against pathogens and cancer cells. Aging-associated changes in the immune system are connected to other age-related diseases, suggesting that immune system rejuvenation may provide a feasible route to improving overall health in the elderly. The Sir2 family of proteins, also called sirtuins, have been broadly implicated in genome homeostasis, cellular metabolism, and aging. Sirtuins are key responders to cellular and environmental stress and, in the case of the nuclear sirtuins, they do so by directing responses to chromatin that include gene expression regulation, retrotransposon repression, enhanced DNA damage repair, and faithful chromosome segregation. In the immune system, sirtuins instruct cellular differentiation from hematopoietic precursors and promote leukocyte polarization and activation. In hematopoietic stem cells, sirtuins safeguard quiescence and stemness to prevent cellular exhaustion. Regulation of cytokine production, which, in many cases, requires NF-κB regulation, is the best-characterized mechanism by which sirtuins control innate immune reactivity. In adaptive immunity, sirtuins promote T cell subset differentiation by controlling master regulators, thereby ensuring an optimal balance of helper (Th) T cell-dependent responses. Sirtuins are very important for immune regulation, but the means by which they regulate immunosenescence are not well understood. This review provides an integrative overview of the changes associated with immune system aging and its potential relationship with the roles of nuclear sirtuins in immune cells and overall organismal aging. Given the anti-aging properties of sirtuins, understanding how they contribute to immune responses is of vital importance and may help us develop novel strategies to improve immune performance in the aging organism.


Assuntos
Envelhecimento/genética , Núcleo Celular/genética , Sistema Imunitário/fisiologia , Sirtuínas/genética , Animais , Expressão Gênica/genética , Humanos
6.
MicroPubl Biol ; 20212021.
Artigo em Inglês | MEDLINE | ID: mdl-34841221

RESUMO

The mammalian genome encodes three Aurora protein kinase homologs (AURKA/B/C) which regulate chromosome segregation in nearly every cell type. AURKC expression is largely limited to meiotic cells. Because of the similarity in sequences between AURKB and AURKC, determining their separate functions during meiosis is challenging. We designed a chemical genetics approach to investigate AURKB function. Using Crispr/Cas9 genome editing in mouse, we replaced an ATP binding pocket amino acid to permit binding of cell-permeable ATP analogs. We also introduced a second site supressor mutation to tolerate the pocket enlargement. Heterozygous mice were fertile, but never produced homozygous analog-sensitive mice. Because Aurkb is an essential gene, we conclude that this analog-sensitive allele is either catalytically inactive or not fully catalytically active in mouse.

7.
Mol Reprod Dev ; 87(12): 1175-1187, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33184962

RESUMO

Transmission of genetic material through high-quality gametes to progeny requires accurate homologous chromosome recombination and segregation during meiosis. A failure to accomplish these processes can have major consequences in reproductive health, including infertility, and development disorders in offspring. Sirtuins, a family of NAD+ -dependent protein deacetylases and ADP-ribosyltransferases, play key roles in genome maintenance, metabolism, and aging. In recent years, Sirtuins have emerged as regulators of several reproductive processes and interventions aiming to target Sirtuin activity are of great interest in the reproductive biology field. Sirtuins are pivotal to protect germ cells against oxidative stress, a major determinant influencing ovarian aging and the quality of gametes. Sirtuins also safeguard the integrity of the genome through epigenetic programs required for regulating gene repression, DNA repair, and chromosome segregation, among others. Although these functions are relatively well characterized in many somatic tissues, how they contribute to reproductive functions is not well understood. This review summarizes our current knowledge on the role of Sirtuins in female reproductive systems and discusses the underlying molecular pathways. In addition, we highlight the importance of Sirtuins as antiaging factors in the ovary and summarize current preclinical efforts to identify treatments to extend female reproductive longevity.


Assuntos
Envelhecimento/genética , Longevidade/genética , Meiose/genética , Reprodução/genética , Sirtuínas/genética , Sirtuínas/metabolismo , Animais , Feminino , Expressão Gênica , Humanos , Masculino , Camundongos , Oogênese/genética , Ovário/metabolismo
8.
Sci Adv ; 6(30): eaaz2590, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32832656

RESUMO

Sirtuins are key players of metabolic stress response. Originally described as deacetylases, some sirtuins also exhibit poorly understood mono-adenosine 5'-diphosphate (ADP)-ribosyltransferase (mADPRT) activity. We report that the deacetylase SirT7 is a dual sirtuin, as it also features auto-mADPRT activity. SirT7 mADPRT occurs at a previously undefined active site, and its abrogation alters SirT7 chromatin distribution. We identify an epigenetic pathway by which ADP-ribosyl-SirT7 is recognized by the ADP-ribose reader mH2A1.1 under glucose starvation, inducing SirT7 relocalization to intergenic regions. SirT7 promotes mH2A1 enrichment in a subset of nearby genes, many of them involved in second messenger signaling, resulting in their specific up- or down-regulation. The expression profile of these genes under calorie restriction is consistently abrogated in SirT7-deficient mice, resulting in impaired activation of autophagy. Our work provides a novel perspective on sirtuin duality and suggests a role for SirT7/mH2A1.1 axis in glucose homeostasis and aging.

9.
Chromosoma ; 128(3): 369-383, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31256246

RESUMO

Sirtuins are NAD+-dependent protein deacylases and ADP-ribosyltransferases that are involved in a wide range of cellular processes including genome homeostasis and metabolism. Sirtuins are expressed in human and mouse oocytes yet their role during female gamete development are not fully understood. Here, we investigated the role of a mammalian sirtuin member, SIRT7, in oocytes using a mouse knockout (KO) model. Sirt7 KO females have compromised fecundity characterized by a rapid fertility decline with age, suggesting the existence of a diminished oocyte pool. Accordingly, Sirt7 KO females produced fewer oocytes and ovulated fewer eggs. Because of the documented role of SIRT7 in DNA repair, we investigated whether SIRT7 regulates prophase I when meiotic recombination occurs. Sirt7 KO pachynema-like staged oocytes had approximately twofold increased γH2AX signals associated with regions with unsynapsed chromosomes. Consistent with the presence of asynaptic chromosome regions, Sirt7 KO oocytes had fewer MLH1 foci (~one less), a mark of crossover-mediated repair, than WT oocytes. Moreover, this reduced level of crossing over is consistent with an observed twofold increased incidence of aneuploidy in Metaphase II eggs. In addition, we found that acetylated lysine 18 of histone H3 (H3K18ac), an established SIRT7 substrate, was increased at asynaptic chromosome regions suggesting a functional relationship between this epigenetic mark and chromosome synapsis. Taken together, our findings demonstrate a pivotal role for SIRT7 in oocyte meiosis by promoting chromosome synapsis and have unveiled the importance of SIRT7 as novel regulator of the reproductive lifespan.


Assuntos
Pareamento Cromossômico , Prófase Meiótica I , Sirtuínas/metabolismo , Acetilação , Aneuploidia , Animais , Troca Genética , Feminino , Fertilidade/genética , Imunofluorescência , Histonas/metabolismo , Homozigoto , Camundongos , Camundongos Knockout , Oócitos/metabolismo , Ovário/metabolismo , Ovário/patologia , Sirtuínas/genética
10.
Nucleic Acids Res ; 47(15): 7870-7885, 2019 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-31226208

RESUMO

Long interspersed elements-1 (LINE-1, L1) are retrotransposons that hold the capacity of self-propagation in the genome with potential mutagenic outcomes. How somatic cells restrict L1 activity and how this process becomes dysfunctional during aging and in cancer cells is poorly understood. L1s are enriched at lamin-associated domains, heterochromatic regions of the nuclear periphery. Whether this association is necessary for their repression has been elusive. Here we show that the sirtuin family member SIRT7 participates in the epigenetic transcriptional repression of L1 genome-wide in both mouse and human cells. SIRT7 depletion leads to increased L1 expression and retrotransposition. Mechanistically, we identify a novel interplay between SIRT7 and Lamin A/C in L1 repression. Our results demonstrate that SIRT7-mediated H3K18 deacetylation regulates L1 expression and promotes L1 association with elements of the nuclear lamina. The failure of such activity might contribute to the observed genome instability and compromised viability in SIRT7 knockout mice. Overall, our results reveal a novel function of SIRT7 on chromatin organization by mediating the anchoring of L1 to the nuclear envelope, and a new functional link of the nuclear lamina with transcriptional repression.


Assuntos
Genoma , Lamina Tipo A/genética , Elementos Nucleotídeos Longos e Dispersos , Sirtuínas/genética , Transcrição Gênica , Animais , Linhagem Celular , Linhagem Celular Tumoral , Imunoprecipitação da Cromatina , Epigênese Genética , Fibroblastos/citologia , Fibroblastos/metabolismo , Heterocromatina/química , Heterocromatina/metabolismo , Histonas/genética , Histonas/metabolismo , Humanos , Células K562 , Lamina Tipo A/metabolismo , Fígado/citologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , Miocárdio/citologia , Miocárdio/metabolismo , Lâmina Nuclear/metabolismo , Lâmina Nuclear/ultraestrutura , Sirtuínas/deficiência , Sirtuínas/metabolismo , Testículo/citologia , Testículo/metabolismo
11.
Curr Biol ; 28(21): 3458-3468.e5, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30415701

RESUMO

Errors in chromosome segregation during female meiosis I occur frequently, and aneuploid embryos account for 1/3 of all miscarriages in humans [1]. Unlike mitotic cells that require two Aurora kinase (AURK) homologs to help prevent aneuploidy (AURKA and AURKB), mammalian germ cells also require a third (AURKC) [2, 3]. AURKA is the spindle-pole-associated homolog, and AURKB/C are the chromosome-localized homologs. In mitosis, AURKB has essential roles as the catalytic subunit of the chromosomal passenger complex (CPC), regulating chromosome alignment, kinetochore-microtubule attachments, cohesion, the spindle assembly checkpoint, and cytokinesis [4, 5]. In mouse oocyte meiosis, AURKC takes over as the predominant CPC kinase [6], although the requirement for AURKB remains elusive [7]. In the absence of AURKC, AURKB compensates, making defining potential non-overlapping functions difficult [6, 8]. To investigate the role(s) of AURKB and AURKC in oocytes, we analyzed oocyte-specific Aurkb and Aurkc single- and double-knockout (KO) mice. Surprisingly, we find that double KO female mice are fertile. We demonstrate that, in the absence of AURKC, AURKA localizes to chromosomes in a CPC-dependent manner. These data suggest that AURKC prevents AURKA from localizing to chromosomes by competing for CPC binding. This competition is important for adequate spindle length to support meiosis I. We also describe a unique requirement for AURKB to negatively regulate AURKC to prevent aneuploidy. Together, our work reveals oocyte-specific roles for the AURKs in regulating each other's localization and activity. This inter-kinase regulation is critical to support wild-type levels of fecundity in female mice.


Assuntos
Aurora Quinase A/genética , Aurora Quinase B/genética , Aurora Quinase C/genética , Meiose , Oócitos/metabolismo , Aneuploidia , Animais , Aurora Quinase A/metabolismo , Aurora Quinase B/metabolismo , Aurora Quinase C/metabolismo , Segregação de Cromossomos/genética , Feminino , Fertilidade/genética , Camundongos
12.
Nat Commun ; 9(1): 101, 2018 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-29317652

RESUMO

Sirtuins are NAD+-dependent deacetylases that facilitate cellular stress response. They include SirT6, which protects genome stability and regulates metabolic homeostasis through gene silencing, and whose loss induces an accelerated aging phenotype directly linked to hyperactivation of the NF-κB pathway. Here we show that SirT6 binds to the H3K9me3-specific histone methyltransferase Suv39h1 and induces monoubiquitination of conserved cysteines in the PRE-SET domain of Suv39h1. Following activation of NF-κB signaling Suv39h1 is released from the IκBα locus, subsequently repressing the NF-κB pathway. We propose that SirT6 attenuates the NF-κB pathway through IκBα upregulation via cysteine monoubiquitination and chromatin eviction of Suv39h1. We suggest a mechanism based on SirT6-mediated enhancement of a negative feedback loop that restricts the NF-κB pathway.


Assuntos
Cisteína/metabolismo , Metiltransferases/metabolismo , NF-kappa B/metabolismo , Domínios PR-SET , Proteínas Repressoras/metabolismo , Sirtuínas/metabolismo , Animais , Linhagem Celular Tumoral , Células Cultivadas , Cromatina/metabolismo , Cisteína/genética , Células HCT116 , Células HEK293 , Células HeLa , Humanos , Metiltransferases/genética , Camundongos , Inibidor de NF-kappaB alfa/metabolismo , Células NIH 3T3 , Ligação Proteica , Proteínas Repressoras/genética , Transdução de Sinais , Sirtuínas/genética , Ubiquitinação , Regulação para Cima
13.
Nucleus ; 8(2): 107-115, 2017 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-28406750

RESUMO

Aging is characterized by a cumulative loss of genome integrity, which involves chromatin reorganization, transcriptional dysregulation and the accumulation of DNA damage. Sirtuins participate in the protection against these aging processes by promoting genome homeostasis in response to cellular stress. We recently reported that SirT7-/- mice suffer from partial embryonic lethality and a progeroid like phenotype. At the cellular level, SIRT7 depletion results in the impaired repair of DNA double-strand breaks (DSBs), one the most dangerous DNA lesions, leading to genome instability. SIRT7 is recruited to DSBs, where it specifically deacetylates histone H3 at lysine 18 and affects the focal accumulation of the DNA damage response factor 53BP1, thus influencing the efficiency of repair. Here, we integrate our findings with the current knowledge on the mode of action of other sirtuin family members in DNA repair. We emphasize their capacity to regulate chromatin structure as a response to DNA damage within the constraints imposed by cellular status.


Assuntos
Dano ao DNA , Reparo do DNA , Sirtuínas/metabolismo , Acetilação , Animais , Núcleo Celular/enzimologia , Histonas/metabolismo , Humanos
14.
EMBO J ; 35(14): 1488-503, 2016 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-27225932

RESUMO

Sirtuins, a family of protein deacetylases, promote cellular homeostasis by mediating communication between cells and environment. The enzymatic activity of the mammalian sirtuin SIRT7 targets acetylated lysine in the N-terminal tail of histone H3 (H3K18Ac), thus modulating chromatin structure and transcriptional competency. SIRT7 deletion is associated with reduced lifespan in mice through unknown mechanisms. Here, we show that SirT7-knockout mice suffer from partial embryonic lethality and a progeroid-like phenotype. Consistently, SIRT7-deficient cells display increased replication stress and impaired DNA repair. SIRT7 is recruited in a PARP1-dependent manner to sites of DNA damage, where it modulates H3K18Ac levels. H3K18Ac in turn affects recruitment of the damage response factor 53BP1 to DNA double-strand breaks (DSBs), thereby influencing the efficiency of non-homologous end joining (NHEJ). These results reveal a direct role for SIRT7 in DSB repair and establish a functional link between SIRT7-mediated H3K18 deacetylation and the maintenance of genome integrity.


Assuntos
Dano ao DNA , Reparo do DNA por Junção de Extremidades , DNA/metabolismo , Sirtuínas/metabolismo , Animais , Camundongos Endogâmicos C57BL , Camundongos Knockout
15.
Cell Rep ; 12(10): 1594-605, 2015 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-26321631

RESUMO

Conquering obesity has become a major socioeconomic challenge. Here, we show that reduced expression of the miR-25-93-106b cluster, or miR-93 alone, increases fat mass and, subsequently, insulin resistance. Mechanistically, we discovered an intricate interplay between enhanced adipocyte precursor turnover and increased adipogenesis. First, miR-93 controls Tbx3, thereby limiting self-renewal in early adipocyte precursors. Second, miR-93 inhibits the metabolic target Sirt7, which we identified as a major driver of in vivo adipogenesis via induction of differentiation and maturation of early adipocyte precursors. Using mouse parabiosis, obesity in mir-25-93-106b(-/-) mice could be rescued by restoring levels of circulating miRNA and subsequent inhibition of Tbx3 and Sirt7. Downregulation of miR-93 also occurred in obese ob/ob mice, and this phenocopy of mir-25-93-106b(-/-) was partially reversible with injection of miR-93 mimics. Our data establish miR-93 as a negative regulator of adipogenesis and a potential therapeutic option for obesity and the metabolic syndrome.


Assuntos
Adiposidade , MicroRNAs/fisiologia , Sirtuínas/genética , Proteínas com Domínio T/genética , Células 3T3-L1 , Adipócitos/fisiologia , Adipogenia , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/patologia , Animais , Autorrenovação Celular , Feminino , Resistência à Insulina , Masculino , Síndrome Metabólica/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Obesos , Interferência de RNA , Sirtuínas/metabolismo , Proteínas com Domínio T/metabolismo
16.
Mol Immunol ; 66(2): 171-9, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25801305

RESUMO

The CD69 type II C-type lectin is one of the earliest indicators of leukocyte activation acting in lymphocyte migration and cytokine secretion. CD69 expression in hematopoietic lineage undergoes rapid changes depending on the cell-lineage, the activation state or the localization of the cell where it is expressed, suggesting a complex and tightly controlled regulation. Here we provide new insights on the transcriptional regulation of CD69 gene in mammal species. Through in silico studies, we analyzed several regulatory features of the 4 upstream conserved non-coding sequences (CNS 1-4) previously described, confirming a major function of CNS2 in the transcriptional regulation of CD69. In addition, multiple transcription binding sites are identified in the CNS2 region by DNA cross-species conservation analysis. By functional approaches we defined a core region of 226bp located within CNS2 as the main enhancer element of CD69 transcription in the hematopoietic cells analyzed. By chromatin immunoprecipitation, binding of RUNX1 to the core-CNS2 was shown in a T cell line. In addition, we found an activating but not essential role of RUNX1 in CD69 gene transcription by site-directed mutagenesis and RNA silencing, probably through the interaction with this potent enhancer specifically in the hematopoietic lineage. In summary, in this study we contribute with new evidences to the landscape of the transcriptional regulation of the CD69 gene.


Assuntos
Região 5'-Flanqueadora , Antígenos CD/genética , Antígenos de Diferenciação de Linfócitos T/genética , Subunidade alfa 2 de Fator de Ligação ao Core/genética , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Lectinas Tipo C/genética , Transcrição Gênica , Sequência de Aminoácidos , Animais , Antígenos CD/química , Antígenos CD/metabolismo , Antígenos de Diferenciação de Linfócitos T/química , Antígenos de Diferenciação de Linfócitos T/metabolismo , Sítios de Ligação , Linhagem Celular Tumoral , Sequência Conservada , Subunidade alfa 2 de Fator de Ligação ao Core/química , Subunidade alfa 2 de Fator de Ligação ao Core/metabolismo , Genes Reporter , Humanos , Células Jurkat , Células K562 , Lectinas Tipo C/química , Lectinas Tipo C/metabolismo , Luciferases/genética , Luciferases/metabolismo , Dados de Sequência Molecular , Ligação Proteica , Transfecção , Transgenes
17.
Mol Cell Biol ; 34(17): 3291-304, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24980432

RESUMO

Transcriptional regulatory mechanisms likely contribute to the etiology of inflammatory bowel disease (IBD), as genetic variants associated with the disease are disproportionately found at regulatory elements. However, the transcription factors regulating colonic inflammation are unclear. To identify these transcription factors, we mapped epigenomic changes in the colonic epithelium upon inflammation. Epigenetic marks at transcriptional regulatory elements responded dynamically to inflammation and indicated a shift in epithelial transcriptional factor networks. Active enhancer chromatin structure at regulatory regions bound by the transcription factor hepatocyte nuclear factor 4α (HNF4A) was reduced during colitis. In agreement, upon an inflammatory stimulus, HNF4A was downregulated and showed a reduced ability to bind chromatin. Genetic variants that confer a predisposition to IBD map to HNF4A binding sites in the human colon cell line CaCo2, suggesting impaired HNF4A binding could underlie genetic susceptibility to IBD. Despite reduced HNF4A binding during inflammation, a temporal knockout model revealed HNF4A still actively protects against inflammatory phenotypes and promotes immune regulatory gene expression in the inflamed colonic epithelium. These findings highlight the potential for HNF4A agonists as IBD therapeutics.


Assuntos
Cromatina/genética , Cromatina/metabolismo , Colite/genética , Colite/metabolismo , Redes Reguladoras de Genes , Fator 4 Nuclear de Hepatócito/genética , Fator 4 Nuclear de Hepatócito/metabolismo , Animais , Sítios de Ligação/genética , Células CACO-2 , Colite/patologia , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Epigênese Genética , Feminino , Técnicas de Inativação de Genes , Predisposição Genética para Doença , Fator 4 Nuclear de Hepatócito/antagonistas & inibidores , Humanos , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Elementos Reguladores de Transcrição
18.
Exp Biol Med (Maywood) ; 238(3): 259-70, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23598971

RESUMO

The state of cell differentiation in adult tissues was once thought to be permanent and irreversible. Since Dolly's cloning and, more recently, the generation of induced pluripotent stem cells (iPSCs) from differentiated cells, the traditional paradigm of cell identity has been reexamined. Much effort has been directed toward understanding how cellular identity is achieved and maintained, and studies are ongoing to investigate how cellular identity can be changed. Cell-specific transcription patterns can be altered by modulating the expression of a few transcription factors, which are known as master regulators of cell fate. Epigenetics also plays a major role in cell type specification because the differentiation process is accompanied by major chromatin remodeling. Moreover, whole-genome analyses reveal that nuclear architecture, as defined by the establishment of chromatin domains, regulates gene interactions in a cell-type-specific manner. In this paper, we review the current knowledge of chromatin states that are relevant to both pluripotency and gene expression during differentiation. Information about the epigenetic regulation of gene expression in iPSCs or naïve embryonic stem cells, compared with their differentiated derivatives, will be important as a practical consideration in the long-term maintenance of pluripotent cell cultures for therapeutic purposes.


Assuntos
Diferenciação Celular , Cromatina/fisiologia , Células-Tronco Pluripotentes Induzidas/fisiologia , Acetilação , Cromatina/ultraestrutura , Epigênese Genética , Regulação da Expressão Gênica , Histonas/metabolismo , Histonas/ultraestrutura , Células-Tronco Pluripotentes Induzidas/citologia , Metilação , Modelos Genéticos
19.
Genes Dev ; 27(6): 639-53, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23468428

RESUMO

The establishment of the epigenetic mark H4K20me1 (monomethylation of H4K20) by PR-Set7 during G2/M directly impacts S-phase progression and genome stability. However, the mechanisms involved in the regulation of this event are not well understood. Here we show that SirT2 regulates H4K20me1 deposition through the deacetylation of H4K16Ac (acetylation of H4K16) and determines the levels of H4K20me2/3 throughout the cell cycle. SirT2 binds and deacetylates PR-Set7 at K90, modulating its chromatin localization. Consistently, SirT2 depletion significantly reduces PR-Set7 chromatin levels, alters the size and number of PR-Set7 foci, and decreases the overall mitotic deposition of H4K20me1. Upon stress, the interaction between SirT2 and PR-Set7 increases along with the H4K20me1 levels, suggesting a novel mitotic checkpoint mechanism. SirT2 loss in mice induces significant defects associated with defective H4K20me1-3 levels. Accordingly, SirT2-deficient animals exhibit genomic instability and chromosomal aberrations and are prone to tumorigenesis. Our studies suggest that the dynamic cross-talk between the environment and the genome during mitosis determines the fate of the subsequent cell cycle.


Assuntos
Ciclo Celular/fisiologia , Instabilidade Genômica , Sirtuína 2/metabolismo , Acetilação , Sequência de Aminoácidos , Animais , Transformação Celular Neoplásica/genética , Cromatina/metabolismo , Dano ao DNA/genética , Técnicas de Inativação de Genes , Células HeLa , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/fisiologia , Metilação , Camundongos , Camundongos Knockout , Mitose , Ligação Proteica , Sirtuína 2/genética
20.
J Immunol ; 183(10): 6513-21, 2009 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-19841192

RESUMO

CD69 is a type II C-type lectin involved in lymphocyte migration and cytokine secretion. CD69 expression represents one of the earliest available indicators of leukocyte activation and its rapid induction occurs through transcriptional activation. In this study we examined the molecular mechanism underlying mouse CD69 gene transcription in vivo in T and B cells. Analysis of the 45-kb region upstream of the CD69 gene revealed evolutionary conservation at the promoter and at four noncoding sequences (CNS) that were called CNS1, CNS2, CNS3, and CNS4. These regions were found to be hypersensitive sites in DNase I digestion experiments, and chromatin immunoprecipitation assays showed specific epigenetic modifications. CNS2 and CNS4 displayed constitutive and inducible enhancer activity in transient transfection assays in T cells. Using a transgenic approach to test CNS function, we found that the CD69 promoter conferred developmentally regulated expression during positive selection of thymocytes but could not support regulated expression in mature lymphocytes. Inclusion of CNS1 and CNS2 caused suppression of CD69 expression, whereas further addition of CNS3 and CNS4 supported developmental-stage and lineage-specific regulation in T cells but not in B cells. We concluded CNS1-4 are important cis-regulatory elements that interact both positively and negatively with the CD69 promoter and that differentially contribute to CD69 expression in T and B cells.


Assuntos
Antígenos CD/genética , Antígenos de Diferenciação de Linfócitos T/genética , Linfócitos B/imunologia , Epigênese Genética , Regiões Promotoras Genéticas , Linfócitos T/imunologia , Animais , Linfócitos B/efeitos dos fármacos , Sequência de Bases , Cromatina/genética , Cromatina/imunologia , Cromatina/metabolismo , Sequência Conservada , Cães , Evolução Molecular , Histonas/genética , Histonas/imunologia , Histonas/metabolismo , Humanos , Indutores de Interferon/farmacologia , Células Jurkat , Lectinas Tipo C , Camundongos , Camundongos Transgênicos , Poli I-C/farmacologia , Linfócitos T/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...