Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Bioengineering (Basel) ; 11(1)2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38247940

RESUMO

Diabetic retinopathy affects more than 100 million people worldwide and is projected to increase by 50% within 20 years. Increased blood glucose leads to the formation of advanced glycation end products (AGEs), which cause cellular and molecular dysfunction across neurovascular systems. These molecules initiate the slow breakdown of the retinal vasculature and the inner blood retinal barrier (iBRB), resulting in ischemia and abnormal angiogenesis. This project examined the impact of AGEs in altering the morphology of healthy cells that comprise the iBRB, as well as the effects of AGEs on thrombi formation, in vitro. Our results illustrate that AGEs significantly alter cellular areas and increase the formation of blood clots via elevated levels of tissue factor. Likewise, AGEs upregulate the expression of cell receptors (RAGE) on both endothelial and glial cells, a hallmark biomarker of inflammation in diabetic cells. Examining the effects of AGEs stimulation on cellular functions that work to diminish iBRB integrity will greatly help to advance therapies that target vision loss in adults.

2.
Animals (Basel) ; 13(2)2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36670791

RESUMO

A survey was sent to zoos, research facilities, and sanctuaries which housed chimpanzees. Data collected included information about 1122 chimpanzees' age, sex, social group-size, rearing history, and enclosure. Respondents were also asked to indicate if certain behaviors had been observed in each chimpanzee over the prior two years. Species- typical behaviors (STBs) were queried, including copulation, tool-use, nest-building, and social grooming. Tool-use was reported present for 94.3% of the sample (n = 982), active social grooming for 85.7% (n = 1121), copulation for 68.3% (n = 863) and nest-building for 58.9% (n = 982). Of the subjects for whom we had data regarding all four STBs (n = 860), 45.6% were reported to engage in all four. Logistic regression analyses using forward Wald criteria were conducted to determine the best model for each STB based on the predictors of age, sex, rearing history, group-size, facility-type, and a sex-by-rearing interaction. The best model for copulation (χ2(6) = 124.62, p < 0.001) included rearing, group-size, facility-type, and the sex-by-rearing interaction. Chimpanzees were more likely to copulate if they were mother-reared, in larger groups, living in research facilities, and, if not mother-reared (NOTMR), more likely to copulate if they were female. The best model for tool-use retained the predictors of age category, facility-type, and sex-by-rearing (χ2(5) = 55.78, p < 0.001). Chimpanzees were more likely to use tools if they were adult, living in research facilities, and if NOTMR, were female. The best model for nest-building included facility-type and rearing (χ2(3) = 205.71, p < 0.001). Chimpanzees were more likely to build nests if they were MR and if they were living in zoos or in sanctuaries. The best model for active social grooming retained the predictors of age, sex, rearing, and type of facility (χ2(6) = 102.15, p < 0.001). Chimpanzees were more likely to engage in active social grooming if they were immature, female, mother-reared, and living in zoos. This research provides a basic behavioral profile for many chimpanzees living under human care in the United States and allows us to determine potential methods for improving the welfare of these and future chimpanzees in this population.

3.
Front Biosci (Landmark Ed) ; 27(6): 169, 2022 05 30.
Artigo em Inglês | MEDLINE | ID: mdl-35748245

RESUMO

Progressive and irreversible vision loss in mature and aging adults creates a health and economic burden, worldwide. Despite the advancements of many contemporary therapies to restore vision, few approaches have considered the innate benefits of gliosis, the endogenous processes of retinal repair that precede vision loss. Retinal gliosis is fundamentally driven by Müller glia (MG) and is characterized by three primary cellular mechanisms: hypertrophy, proliferation, and migration. In early stages of gliosis, these processes have neuroprotective potential to halt the progression of disease and encourage synaptic activity among neurons. Later stages, however, can lead to glial scarring, which is a hallmark of disease progression and blindness. As a result, the neuroprotective abilities of MG have remained incompletely explored and poorly integrated into current treatment regimens. Bioengineering studies of the intrinsic behaviors of MG hold promise to exploit glial reparative ability, while repressing neuro-disruptive MG responses. In particular, recent in vitro systems have become primary models to analyze individual gliotic processes and provide a stepping stone for in vivo strategies. This review highlights recent studies of MG gliosis seeking to harness MG neuroprotective ability for regeneration using contemporary biotechnologies. We emphasize the importance of studying gliosis as a reparative mechanism, rather than disregarding it as an unfortunate clinical prognosis in diseased retina.


Assuntos
Gliose , Neuroglia , Adulto , Gliose/prevenção & controle , Humanos , Retina
5.
Micromachines (Basel) ; 13(3)2022 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-35334698

RESUMO

Millions of adults are affected by progressive vision loss worldwide. The rising incidence of retinal diseases can be attributed to damage or degeneration of neurons that convert light into electrical signals for vision. Contemporary cell replacement therapies have transplanted stem and progenitor-like cells (SCs) into adult retinal tissue to replace damaged neurons and restore the visual neural network. However, the inability of SCs to migrate to targeted areas remains a fundamental challenge. Current bioengineering projects aim to integrate microfluidic technologies with organotypic cultures to examine SC behaviors within biomimetic environments. The application of neural phantoms, or eye facsimiles, in such systems will greatly aid the study of SC migratory behaviors in 3D. This project developed a bioengineering system, called the µ-Eye, to stimulate and examine the migration of retinal SCs within eye facsimiles using external chemical and electrical stimuli. Results illustrate that the imposed fields stimulated large, directional SC migration into eye facsimiles, and that electro-chemotactic stimuli produced significantly larger increases in cell migration than the individual stimuli combined. These findings highlight the significance of microfluidic systems in the development of approaches that apply external fields for neural repair and promote migration-targeted strategies for retinal cell replacement therapy.

6.
HGG Adv ; 3(2): 100094, 2022 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-35287299

RESUMO

Hereditary alpha-tryptasemia (HαT) is an autosomal dominant (AD) genetic trait characterized by elevated basal serum tryptase ≥8 ng/mL, caused by increased α-tryptase-encoding TPSAB1 copy number. HαT affects 5% to 7% of Western populations and has been associated with joint hypermobility. Hypermobility disorders are likewise frequently AD, but genetic etiologies are often elusive. Genotyping of individuals with hypermobility spectrum disorder (n = 132), hypermobile Ehlers-Danlos syndrome (n = 78), or axial skeletal abnormalities with hypermobility (n = 56) was performed. Clinical features of individuals with and without HαT were compared. When analyzing our combined cohorts, dysphagia (p = 0.007) and retained primary dentition (p = 0.0003) were significantly associated with HαT, while positive associations with anaphylaxis (p = 0.07) and pruritus (P = 0.5) did not reach significance likely due to limited sample size. Overall, HαT prevalence is not increased in individuals with hypermobility disorders, rather linked to a unique endotype, demonstrating how HαT may modify clinical presentations of complex patients.

10.
Front Pediatr ; 9: 709933, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34532303

RESUMO

Background: Young maternal age is associated with negative outcomes at birth and with offspring's growth. In low- and middle-income countries, adolescents' offspring growth little has been studied. Objective: To determine the association of maternal sociodemographic characteristics with weight, length, and BMI change in adolescents' offspring in their first year of life. Methods: This is a one-year follow-up study that included adolescent mothers and their offspring from 2010 to 2017. The infant anthropometric variables were performed at birth, 3, 6, and 12 months. Maternal health, pregnancy, and social variables were evaluated as well as birth outcomes. Crude, percentage, Z score, and percentile changes of weight, length, and BMI were evaluated from birth to 1-year-old. Statistical analyses were adjusted by maternal chronological age, socioeconomic status, breastfeeding duration, the timing of introduction of complementary feeding, among other variables. Results: We examined 186 dyads (mother-infant). The median maternal age was 15.5 years, and the mean pre-pregnancy BMI was 20. The mean gestational age was 39.1 weeks for infants, birth weight was 3,039 g, and length at birth was 49.5-cm. Maternal chronological age, the timing of introduction of complementary feeding, socioeconomic status, and maternal occupation were associated with offspring's weight gain at 12 months. Length gain was associated with exclusive breastfeeding. Socioeconomic status and occupation were associated with offspring's BMI change. When performing adjusted multivariable analyses, weight and length at birth were associated weight and BMI at 12 months. Conclusions: Weight at birth may negatively predict infant's weight and BMI changes at 12 months, while length at birth may positively predict the changes. Maternal chronological age, socioeconomic level, occupation, and the timing of the introduction of complementary feeding were associated with the weight change. Only exclusive breastfeeding was associated with length Z-score change in adolescents' offspring in their first 12-months of life.

11.
Front Neurosci ; 15: 714094, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34366783
13.
J Tissue Eng Regen Med ; 15(2): 176-188, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33274811

RESUMO

Disorders of the nervous system (NS) impact millions of adults, worldwide, as a consequence of traumatic injury, genetic illness, or chronic health conditions. Contemporary studies have begun to incorporate neuroglia into emerging NS therapies to harness the regenerative potential of glial-mediated synapses in the brain and spinal cord. However, the role of cerebrospinal fluid (CSF) that surrounds neuroglia and interfaces with their associated synapses remains only partially explored. The flow of CSF within subarachnoid spaces (SAS) circulates essential polypeptides, metabolites, and growth factors that directly impact neural response and recovery via signaling with healthy glia. Despite the availability of artificial CSF solutions used in neurosurgery and NS treatments, tissue engineering projects continue to use cell culture media, such as Neurobasal (NB) and Dulbecco's Modified Eagle Medium (DMEM), for development and characterization of many transplantable cells, matrixes, and integrated cellular systems. The current study examined in vitro behaviors of glial Schwann cells (ShC) and spinal cord explants (SCE) within a CSF replacement solution, Elliott's B Solution (EBS), used widely in the treatment of NS disorders. Our tests used EBS to create defined chemical microenvironments of extracellular factors within a glial line (gLL) microfluidic device, previously described by our group. The gLL is comparable in scale to the in vivo SAS that envelopes endogenous CSF and enables molecular transport via mechanisms of convective diffusion. Our results illustrate that EBS solutions facilitate ShC survival, morphology, and proliferation similar to those measured in traditional DMEM, and additionally support glial chemotactic behaviors in response to brain-derived growth factor (BDNF). Our data indicates that ShC undergo significant chemotaxis toward high and low concentration gradients of BDNF with statistical differences between gradients formed within diluents of EBS and DMEM solutions. Moreover, SCE cultured with EBS solutions facilitated measurement of neurite explant extension commensurate with reported in vivo measurements. This data highlights the translational significance and advantages of incorporating CSF replacement fluids to interrogate cellular behaviors and advance regenerative NS therapies.


Assuntos
Movimento Celular , Dispositivos Lab-On-A-Chip , Técnicas Analíticas Microfluídicas , Células de Schwann/metabolismo , Medula Espinal/metabolismo , Humanos , Células de Schwann/citologia , Medula Espinal/citologia
14.
Micromachines (Basel) ; 11(12)2020 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-33316971

RESUMO

Bioengineering systems have transformed scientific knowledge of cellular behaviors in the nervous system (NS) and pioneered innovative, regenerative therapies to treat adult neural disorders. Microscale systems with characteristic lengths of single to hundreds of microns have examined the development and specialized behaviors of numerous neuromuscular and neurosensory components of the NS. The visual system is comprised of the eye sensory organ and its connecting pathways to the visual cortex. Significant vision loss arises from dysfunction in the retina, the photosensitive tissue at the eye posterior that achieves phototransduction of light to form images in the brain. Retinal regenerative medicine has embraced microfluidic technologies to manipulate stem-like cells for transplantation therapies, where de/differentiated cells are introduced within adult tissue to replace dysfunctional or damaged neurons. Microfluidic systems coupled with stem cell biology and biomaterials have produced exciting advances to restore vision. The current article reviews contemporary microfluidic technologies and microfluidics-enhanced bioassays, developed to interrogate cellular responses to adult retinal cues. The focus is on applications of microfluidics and microscale assays within mammalian sensory retina, or neuro retina, comprised of five types of retinal neurons (photoreceptors, horizontal, bipolar, amacrine, retinal ganglion) and one neuroglia (Müller), but excludes the non-sensory, retinal pigmented epithelium.

15.
Brain Sci ; 10(6)2020 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-32485834

RESUMO

Progressive vision loss in adults has become increasingly prevalent worldwide due to retinopathies associated with aging, genetics, and epigenetic factors that damage the retinal microvasculature. Insufficient supply of oxygen and/or nutrients upregulates factors such as vascular endothelial growth factor (VEGF) and epidermal growth factor (EGF), which can induce abnormal angiogenesis and damage the structural arrangement of the retinal blood barrier (BRB). Müller glia (MG) regulate the diffusion of essential compounds across the BRB and respond to retinal insults via reactive gliosis, which includes cell hypertrophy, migration, and/or proliferation near areas of elevated VEGF concentration. Increasing concentrations of exogenous VEGF, upregulated by retinal pigmented epithelium cells, and endogenous epidermal growth factor receptor (EGF-R) stimulation in MG, implicated in MG proliferative and migratory behavior, often lead to progressive and permanent vision loss. Our project examined the chemotactic responses of the rMC-1 cell line, a mammalian MG model, toward VEGF and EGF signaling fields in transwell assays, and within respective concentration gradient fields produced in the glia line (gLL) microfluidic system previously described by our group. rMC-1 receptor expression in defined ligand fields was also evaluated using quantitative polymerase chain reaction (qPCR) and immunocytochemical staining. Results illustrate dramatic increases in rMC-1 chemotactic responses towards EGF gradient fields after pre-treatment with VEGF. In addition, qPCR illustrated significant upregulation of EGF-R upon VEGF pre-treatment, which was higher than that induced by its cognate ligand, EGF. These results suggest interplay of molecular pathways between VEGF and EGF-R that have remained understudied in MG but are significant to the development of effective anti-VEGF treatments needed for a variety of retinopathies.

16.
Micromachines (Basel) ; 11(4)2020 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-32244321

RESUMO

Contemporary regenerative therapies have introduced stem-like cells to replace damaged neurons in the visual system by recapitulating critical processes of eye development. The collective migration of neural stem cells is fundamental to retinogenesis and has been exceptionally well-studied using the fruit fly model of Drosophila Melanogaster. However, the migratory behavior of its retinal neuroblasts (RNBs) has been surprisingly understudied, despite being critical to retinal development in this invertebrate model. The current project developed a new microfluidic system to examine the collective migration of RNBs extracted from the developing visual system of Drosophila as a model for the collective motile processes of replacement neural stem cells. The system scales with the microstructure of the Drosophila optic stalk, which is a pre-cursor to the optic nerve, to produce signaling fields spatially comparable to in vivo RNB stimuli. Experiments used the micro-optic stalk system, or µOS, to demonstrate the preferred sizing and directional migration of collective, motile RNB groups in response to changes in exogenous concentrations of fibroblast growth factor (FGF), which is a key factor in development. Our data highlight the importance of cell-to-cell contacts in enabling cell cohesion during collective RNB migration and point to the unexplored synergy of invertebrate cell study and microfluidic platforms to advance regenerative strategies.

17.
J Tissue Eng Regen Med ; 14(4): 609-621, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32080982

RESUMO

Neurodegeneration and dysfunction cause mobility impairment and/or paralysis in millions of adults, worldwide. Motor deficit and recovery in adults depend upon the plasticity of the neuromuscular junction (NMJ), a tripartite, biochemical synapse that transduces electrical impulses from the brain into voluntary contraction of skeletal muscle. Nonmyelinating Schwann cells (nmSCs) of the NMJ have been increasingly recognized as active synaptic partners with motor neurons and muscle and have become recent therapeutic targets for regeneration. nmSC synaptic transmission, plasticity, and growth are strongly modulated by brain-derived neurotrophic factor (BDNF), whose regenerative abilities have been explored through emerging biomaterials and tissue-engineered systems, as well as via clinical trials. Experimental models engineered to investigate integrated NMJ response(s) to local gradients of BDNF will both advance our understanding of key modulators of synaptic activity, postinjury, and aid in the development of NMJ-targeted, regenerative therapies to restore mobility. The current study examined the ability of nmSCs to respond to microfluidically controlled BDNF signaling upon different haptotactic substrates of motor neurons (MNs) and laminin adhesion coating. Tests seeding nmSCs sequentially with MNs illustrated that sequential seeding reported a fivefold increase in levels of tropomyosin receptor kinase B expression in response to BDNF signaling and a nearly fivefold increase in migration distance along BDNF gradients. By contrast, concurrent seeding of MNs and nmSCs upon laminin adhesion coating illustrated a difference in migration distance of less than one third-fold over control. Our findings are among the first to examine migratory responses of nmSCs for regenerative strategies and highlight the potential to restabilize NMJ synaptic activity by affecting nmSC behaviors through therapeutic BDNF and seeding with MNs.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/farmacologia , Movimento Celular/efeitos dos fármacos , Células de Schwann/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator Neurotrófico Derivado do Encéfalo/metabolismo , Linhagem Celular , Humanos , Células de Schwann/citologia
18.
J Bone Miner Res ; 35(5): 966-977, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-31910292

RESUMO

Localized apoptosis of osteocytes, the tissue-resident cells within bone, occurs with fatigue microdamage and activates bone resorption. Osteoclasts appear to target and remove dying osteocytes, resorbing damaged bone matrix as well. Osteocyte apoptosis similarly activates bone resorption with estrogen loss and in disuse. Apoptotic osteocytes trigger viable neighbor (ie, bystander) osteocytes to produce RANKL, the cytokine required for osteoclast activation. Signals from apoptotic osteocytes that trigger this bystander RANKL expression remain obscure. Studying signaling among osteocytes has been hampered by lack of in vitro systems that model the limited communication among osteocytes in vivo (ie, via gap junctions on cell processes and/or paracrine signals through thin pericellular fluid spaces around osteocytes). Here, we used a novel multiscale fluidic device (the Macro-micro-nano, or Mµn) that reproduces these key anatomical features. Osteocytes in discrete compartments of the device communicate only via these limited pathways, which allows assessment of their roles in triggering osteocytes RANKL expression. Apoptosis of MLOY-4 osteocytes in the Mµn device caused increased osteocyte RANKL expression in the neighboring compartment, consistent with in vivo findings. This RANKL upregulation in bystander osteocytes was prevented by blocking Pannexin 1 channels as well as its ATP receptor. ATP alone caused comparable RANKL upregulation in bystander osteocytes. Finally, blocking Connexin 43 gap junctions did not abolish osteocyte RANKL upregulation, but did alter the distribution of RANKL expressing bystander osteocytes. These findings point to extracellular ATP, released from apoptotic osteocytes via Panx1 channels, as a major signal for triggering bystander osteocyte RANKL expression and activating bone remodeling. © 2020 American Society for Bone and Mineral Research.


Assuntos
Apoptose , Reabsorção Óssea , Osteócitos , Ligante RANK/metabolismo , Animais , Remodelação Óssea , Linhagem Celular , Conexinas , Camundongos , Proteínas do Tecido Nervoso , Osteoclastos , Transdução de Sinais
19.
Learn Mem ; 27(1): 6-11, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31843977

RESUMO

Females are at higher risk for certain opioid addictive behaviors, but the influence of ovarian hormones is unknown. In our rat model of heroin self-administration, females exhibited higher relapse rates that correlated with rates of heroin seeking on the first extinction session. We administered estradiol alone, or in combination with progesterone, 30 min prior to the first extinction session in freely cycling, heroin-seeking female rats. Although neither treatment produced long-term effects on relapse, each treatment regulated distinct aspects of heroin seeking. Estradiol treatment enhanced extinction memory retention, whereas the combination treatment acutely reduced expression of heroin seeking.


Assuntos
Comportamento de Procura de Droga/efeitos dos fármacos , Estradiol/administração & dosagem , Extinção Psicológica/fisiologia , Heroína/administração & dosagem , Progesterona/administração & dosagem , Animais , Comportamento Animal/efeitos dos fármacos , Comportamento Animal/fisiologia , Condicionamento Operante/efeitos dos fármacos , Condicionamento Operante/fisiologia , Extinção Psicológica/efeitos dos fármacos , Feminino , Masculino , Ciclo Menstrual , Ratos Wistar , Caracteres Sexuais
20.
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA