Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Amino Acids ; 55(9): 1083-1102, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37382761

RESUMO

Amino-acid-based surfactants are a group of compounds that resemble natural amphiphiles and thus are expected to have a low impact on the environment, owing to either the mode of surfactant production or its means of disposal. Within this context, arginine-based tensioactives have gained particular interest, since their cationic nature-in combination with their amphiphilic character-enables them to act as broad-spectrum biocides. This capability is based mainly on their interactive affinity for the microbial envelope that alters the latter's structure and ultimately its function. In the work reported here, we investigated the efficiency of Nα-benzoyl arginine decyl- and dodecylamide against Candida spp. to further our understanding of the antifungal mechanism involved. For the assays, both a Candida albicans and a Candida tropicalis clinical isolates along with a C. albicans-collection strain were used as references. As expected, both arginine-based compounds proved to be effective against the strains tested through inhibiting both the planktonic and the sessile growth. Furthermore, atomic force microscopy techniques and lipid monolayer experiments enabled us to gain insight into the effect of the surfactant on the cellular envelope. The results demonstrated that all the yeasts treated exhibited changes in their exomorphologic structure, with respect to alterations in both roughness and stiffness, relative to the nontreated ones. This finding-in addition to the amphiphiles' proven ability to insert themselves within this model fungal membrane-could explain the changes in the yeast-membrane permeability that could be linked to viability loss and mixed-vesicle release.


Assuntos
Candida , Tensoativos , Tensoativos/farmacologia , Arginina/farmacologia , Antifúngicos/farmacologia , Antifúngicos/química , Candida albicans , Biofilmes , Testes de Sensibilidade Microbiana
2.
Antibiotics (Basel) ; 11(11)2022 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-36358156

RESUMO

The synthetic peptide SmAPα1-21 (KLCEKPSKTWFGNCGNPRHCG) derived from DefSm2-D defensin α-core is active at micromolar concentrations against the phytopathogenic fungus Fusarium graminearum and has a multistep mechanism of action that includes alteration of the fungal cell wall and membrane permeabilization. Here, we continued the study of this peptide's mode of action and explored the correlation between the biological activity and its primary structure. Transmission electron microscopy was used to study the ultrastructural effects of SmAPα1-21 in conidial cells. New peptides were designed by modifying the parent peptide SmAPα1-21 (SmAPH19R and SmAPH19A, where His19 was replaced by Arg or Ala, respectively) and synthesized by the Fmoc solid phase method. Antifungal activity was determined against F. graminearum. Membrane permeability and subcellular localization in conidia were studied by confocal laser scanning microscopy (CLSM). Reactive oxygen species (ROS) production was assessed by fluorescence spectroscopy and CLSM. SmAPα1-21 induced peroxisome biogenesis and oxidative stress through ROS production in F. graminearum and was internalized into the conidial cells' cytoplasm. SmAPH19R and SmAPH19A were active against F. graminearum with minimal inhibitory concentrations (MICs) of 38 and 100 µM for SmAPH19R and SmAPH19A, respectively. The replacement of His19 by Ala produced a decrease in the net charge with a significant increase in the MIC, thus evidencing the importance of the positive charge in position 19 of the antifungal peptide. Like SmAPα1-21, SmAP2H19A and SmAP2H19R produced the permeabilization of the conidia membrane and induced oxidative stress through ROS production. However, SmAPH19R and SmAPH19A were localized in the conidia cell wall. The replacement of His19 by Ala turned all the processes slower. The extracellular localization of peptides SmAPH19R and SmAPH19A highlights the role of the His19 residue in the internalization.

3.
Methods Mol Biol ; 2402: 243-256, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-34854049

RESUMO

The development of new strategies for achieving stable asymmetric membrane models has turned interleaflet lipid asymmetry into a topic of major interest. Cyclodextrin-mediated lipid exchange constitutes a simple and versatile method for preparing asymmetric membrane models without the need for sophisticated equipment. Here we describe a protocol for preparing asymmetric supported lipid bilayers mimicking membrane rafts by cyclodextrin-mediated lipid exchange and the main guidelines for obtaining structural information and quantitative measures of their mechanical properties using Atomic force microscopy and Force spectroscopy; two powerful techniques that allow membrane characterization at the nanoscale.


Assuntos
Bicamadas Lipídicas , Ciclodextrinas , Microdomínios da Membrana , Microscopia de Força Atômica
4.
Amino Acids ; 53(4): 609-619, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33710434

RESUMO

Cationic amino acid-based surfactants are known to interact with the lipid bilayer of microorganism resulting in cell death through a disruption of the membrane topology. To elucidate the interaction of a cationic surfactant synthesized in our lab, investigations involving Nα-benzoyl-arginine decyl amide (Bz-Arg-NHC10), and model membranes composed by 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) were done. Bz-Arg-NHC10was able to penetrate into DPPC monolayers up to a critical pressure of 59.6 mN m-1. Differential scanning calorimetry revealed that as the concentration of Bz-Arg-NHC10 increased, the main transition temperature of DPPC slightly decreased. Atomic force microscopy (AFM) in situ experiments performed on supported DPPC bilayers on mica allowed monitoring the changes induced by Bz-Arg-NHC10. DPPC bilayer patches were partially removed, mainly in borders and bilayer defects for 50 µM Bz-Arg-NHC10 solution. Increasing the concentration to 100 µM resulted in a complete depletion of the supported bilayers. Surface plasmon resonance (SPR) experiments, carried out with fully DPPC bilayers covered chips, showed a net increase of the SPR signal, which can be explained by Bz-Arg-NHC10 adsorption. When patchy DPPC bilayers were formed on the substrate, a SPR signal net decrease was obtained, which is consistent with the phospholipids' removal observed in the AFM images. The results obtained suggest that the presence of the benzoyl group attached to the polar head of our compound would be the responsible of the increased antimicrobial activity against gram-negative bacteria when compared with other arginine-based surfactants.


Assuntos
1,2-Dipalmitoilfosfatidilcolina/química , Arginina/análogos & derivados , Bicamadas Lipídicas/química , Tensoativos/química , Adsorção , Arginina/química , Varredura Diferencial de Calorimetria , Cátions/química , Interações Hidrofóbicas e Hidrofílicas , Membranas Artificiais , Microscopia de Força Atômica , Ressonância de Plasmônio de Superfície
5.
Biochim Biophys Acta Biomembr ; 1863(1): 183467, 2021 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-32871116

RESUMO

Sphingolipids-enriched rafts domains are proposed to occur in plasma membranes and to mediate important cellular functions. Notwithstanding, the asymmetric transbilayer distribution of phospholipids that exists in the membrane confers the two leaflets different potentials to form lateral domains as next to no sphingolipids are present in the inner leaflet. How the physical properties of one leaflet can influence the properties of the other and its importance on signal transduction across the membrane are questions still unresolved. In this work, we combined AFM imaging and Force spectroscopy measurements to assess domain formation and to study the nanomechanical properties of asymmetric supported lipid bilayers (SLBs) mimicking membrane rafts. Asymmetric SLBs were formed by incorporating N-palmitoyl-sphingomyelin (16:0SM) into the outer leaflet of preformed 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC)/Cholesterol SLBs through methyl-ß-cyclodextrin-mediated lipid exchange. Lipid domains were detected after incorporation of 16:0SM though their phase state varied from gel to liquid ordered (Lo) phase if the procedure was performed at 24 or 37 °C, respectively. When comparing symmetric and asymmetric Lo domains, differences in size and morphology were observed, with asymmetric domains being smaller and more interconnected. Both types of Lo domains showed similar mechanical stability in terms of rupture forces and Young's moduli. Notably, force curves in asymmetric domains presented two rupture events that could be attributed to the sequential rupture of a liquid disordered (Ld) and a Lo phase. Interleaflet coupling in asymmetric Lo domains could also be inferred from those measurements. The experimental approach outlined here would significantly enhance the applicability of membrane models.


Assuntos
Bicamadas Lipídicas/química , Microdomínios da Membrana/química , Esfingolipídeos/química
6.
Colloids Surf B Biointerfaces ; 173: 549-556, 2019 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-30347381

RESUMO

Membrane structure is a key factor for the cell`s physiology, pathology, and therapy. Evaluating the importance of lipid species such as N-nervonoyl sphingomyelin (24:1-SM) -able to prevent phase separation- to membrane structuring remains a formidable challenge. This is the first report in which polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS) is applied to investigate the lipid-lipid interactions in 16:0 vs 24:1-SM monolayers and their mixtures with 1,2-Dioleoyl-sn-glycero-3-phosphocholine (DOPC) and cholesterol (Chol) (DOPC/SM/Chol 2:1:1). From the results we inferred that the cis double bond (Δ15) in 24:1-SM molecule diminishes intermolecular H-bonding and chain packing density compared to that of 16:0-SM. In ternary mixtures containing 16:0-SM, the relative intensity of the two components of the Amide I band reflected changes in the H-bonding network due to SM-Chol interactions. In contrast, the contribution of the main components of the Amide I band in DOPC/24:1-SM/Chol remained as in 24:1-SM monolayers, with a larger contribution of the non-H-bonded component. The most interesting feature in these ternary films is that the CO stretching mode of DOPC appeared with an intensity similar to that of SM Amide I band in DOPC/16:0-SM/Chol monolayers (a two-phase [Lo/Le] system), whereas an extremely low intensity of the CO band was detected in DOPC/24:1-SM/Chol monolayers (single Le phase). This is evidence that the unsaturation in 24:1-SM affected not only the conformational properties of acyl chains but also the orientation of the chemical groups at the air/water interface. The physical properties and overall H-bonding ability conferred by 24:1-SM may have implications in cell signaling and binding of biomolecules.


Assuntos
Colesterol/química , Fosfatidilcolinas/química , Esfingomielinas/química , Lipossomas Unilamelares/química , Ligação de Hidrogênio , Espectroscopia de Luz Próxima ao Infravermelho/métodos
7.
Colloids Surf B Biointerfaces ; 172: 423-429, 2018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-30196227

RESUMO

Model biomembranes can provide valuable insights into the properties of complex biological membranes. Among several techniques, Surface Plasmon Resonance (SPR) provides a label-free analysis of the interactions of bioactive molecules with biomembranes with an experimental setup that allows mimicking biological environments. Nevertheless, protocols that enable the preparation of stable supported membrane systems with reproducible structural and functional properties on the biosensor chip are still needed. In this work, we present a simple protocol to modify SPR substrates that allows the formation of a phase-segregated supported lipid bilayer (SLB). SLBs are formed by fusion of lipid vesicles of pure phospholipids (DMPC, DPPC and DOPC) and of a ternary mixture (DOPC/16:0 SM/Cho in 2:1:1 molar ratio) on a SPR gold sensor chip covered with a dithiothreitol monolayer. The formation of a SLB on the SPR sensing surface in a reproducible way was assessed by the combined use of the SPR technique with AFM. The interaction of a cholesterol-extracting drug with SLBs was studied as a model of membrane-lipophilic biomolecule interaction. The proposed strategy allowed us to obtain a membrane model where phase coexistence is present and where Cho depletion from ternary mixtures was comparable to the extraction results reported for human erythrocytes.


Assuntos
Bicamadas Lipídicas/química , Microscopia de Força Atômica/métodos , Ressonância de Plasmônio de Superfície/métodos , Colesterol/química , Ouro/química , Análise Espectral , beta-Ciclodextrinas/química
8.
Colloids Surf B Biointerfaces ; 158: 76-83, 2017 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-28683345

RESUMO

Uropathogenic strains of Escherichia coli produce virulence factors, such as the protein toxin alpha-hemolysin (HlyA), that enable the bacteria to colonize the host and establish an infection. HlyA is synthetized as a protoxin (ProHlyA) that is transformed into the active form in the bacterial cytosol by the covalent linkage of two fatty-acyl moieties to the polypeptide chain before the secretion of HlyA into the extracellular medium. The aim of this work was to investigate the effect of the fatty acylation of HlyA on protein conformation and protein-membrane interactions. Polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS) experiments were performed at the air-water interface, and lipid monolayers mimicking the outer leaflet of red-blood-cell membranes were used as model systems for the study of protein-membrane interaction. According to surface-pressure measurements, incorporation of the acylated protein into the lipid films was faster than that of the nonacylated form. PM-IRRAS measurements revealed that the adsorption of the proteins to the lipid monolayers induced disorder in the lipid acyl chains and also changed the elastic properties of the films independently of protein acylation. No significant difference was observed between HlyA and ProHlyA in the interaction with the model lipid monolayers; but when these proteins became adsorbed on a bare air-water interface, they adopted different secondary structures. The assumption of the correct protein conformation at a hydrophobic-hydrophilic interface could constitute a critical condition for biologic activity.


Assuntos
Proteínas de Escherichia coli/química , Proteínas Hemolisinas/química , Adsorção , Proteínas de Bactérias/química , Interações Hidrofóbicas e Hidrofílicas , Água/química
10.
Biochim Biophys Acta ; 1838(7): 1832-41, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24613790

RESUMO

α-Hemolysin (HlyA) is a protein toxin, a member of the pore-forming Repeat in Toxin (RTX) family, secreted by some pathogenic strands of Escherichia coli. The mechanism of action of this toxin seems to involve three stages that ultimately lead to cell lysis: binding, insertion, and oligomerization of the toxin within the membrane. Since the influence of phase segregation on HlyA binding and insertion in lipid membranes is not clearly understood, we explored at the meso- and nanoscale-both in situ and in real-time-the interaction of HlyA with lipid monolayers and bilayers. Our results demonstrate that HlyA could insert into monolayers of dioleoylphosphatidylcholine/sphingomyelin/cholesterol (DOPC/16:0SM/Cho) and DOPC/24:1SM/Cho. The time course for HlyA insertion was similar in both lipidic mixtures. HlyA insertion into DOPC/16:0SM/Cho monolayers, visualized by Brewster-angle microscopy (BAM), suggest an integration of the toxin into both the liquid-ordered and liquid-expanded phases. Atomic-force-microscopy imaging reported that phase boundaries favor the initial binding of the toxin, whereas after a longer time period the HlyA becomes localized into the liquid-disordered (Ld) phases of supported planar bilayers composed of DOPC/16:0SM/Cho. Our AFM images, however, showed that the HlyA interaction does not appear to match the general strategy described for other invasive proteins. We discuss these results in terms of the mechanism of action of HlyA.


Assuntos
Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Proteínas Hemolisinas/metabolismo , Bicamadas Lipídicas/metabolismo , Lipídeos de Membrana/metabolismo , Sítios de Ligação , Membrana Celular/metabolismo , Colesterol/metabolismo , Fosfatidilcolinas/metabolismo , Esfingomielinas/metabolismo
11.
Biochem J ; 458(3): 481-9, 2014 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-24351077

RESUMO

Several toxins that act on animal cells present different, but specific, interactions with cholesterol or sphingomyelin. In the present study we demonstrate that HlyA (α-haemolysin) of Escherichia coli interacts directly with cholesterol. We have recently reported that HlyA became associated with detergent-resistant membranes enriched in cholesterol and sphingomyelin; moreover, toxin oligomerization, and hence haemolytic activity, diminishes in cholesterol-depleted erythrocytes. Considering these results, we studied the insertion process, an essential step in the lytic mechanism, by the monolayer technique, finding that HlyA insertion is favoured in cholesterol- and sphingomyelin-containing membranes. On the basis of this result, we studied the direct interaction with either of the lipids by lipid dot blotting, lysis inhibition and SPR (surface plasmon resonance) assays. The results of the present study demonstrated that an interaction between cholesterol and HlyA exists that seems to favour a conformational state of the protein that allows its correct insertion into the membrane and its further oligomerization to form pores.


Assuntos
Colesterol/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas Hemolisinas/metabolismo , Animais , Colesterol/química , Proteínas de Escherichia coli/química , Proteínas Hemolisinas/química , Hemólise , Técnicas In Vitro , Ovinos , Esfingomielinas/química , Esfingomielinas/metabolismo , Ressonância de Plasmônio de Superfície , Lipossomas Unilamelares/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...