Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 28(2)2023 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-36677707

RESUMO

Effective removal of heavy metals from water is critical for environmental safety and public health. This work presents a reduced graphene oxide (rGO) obtained simply by using gallic acid and sodium ascorbate, without any high thermal process or complex functionalization, for effective removal of heavy metals. FTIR and Raman analysis show the effective conversion of graphene oxide (GO) into rGO and a large presence of defects in rGO. Nitrogen adsorption isotherms show a specific surface area of 83.5 m2/g. We also measure the zeta-potential of the material showing a value of -52 mV, which is lower compared to the -32 mV of GO. We use our rGO to test adsorption of several ion metals (Ag (I), Cu (II), Fe (II), Mn (II), and Pb(II)), and two organic contaminants, methylene blue and hydroquinone. In general, our rGO shows strong adsorption capacity of metals and methylene blue, with adsorption capacity of qmax = 243.9 mg/g for Pb(II), which is higher than several previous reports on non-functionalized rGO. Our adsorption capacity is still lower compared to functionalized graphene oxide compounds, such as chitosan, but at the expense of more complex synthesis. To prove the effectiveness of our rGO, we show cleaning of waste water from a paper photography processing operation that contains large residual amounts of hydroquinone, sulfites, and AgBr. We achieve 100% contaminants removal for 20% contaminant concentration and 63% removal for 60% contaminant concentration. Our work shows that our simple synthesis of rGO can be a simple and low-cost route to clean residual waters, especially in disadvantaged communities with low economical resources and limited manufacturing infrastructure.

2.
J Chem Phys ; 156(2): 024702, 2022 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-35032976

RESUMO

The diffusion length of quantum dot (QD) films is a critical parameter to improve the performance of QD-based optoelectronic devices. The dot-to-dot hopping transport mechanism results in shorter diffusion lengths compared to bulk solids. Herein, we present an experimental method to measure the diffusion length in PbS QD films using single layer graphene as a charge collector to monitor the density of photogenerated carriers. By producing devices with different thicknesses, we can construct light absorption and photocarrier density profiles, allowing extracting light penetration depths and carrier diffusion lengths for electrons and holes. We realized devices with small (size: ∼2.5 nm) and large (size: ∼4.8 nm) QDs, and use λ = 532 nm and λ = 635 nm wavelength illumination. For small QDs, we obtain diffusion lengths of 180 nm for holes and 500 nm for electrons. For large QDs, we obtain diffusion lengths of 120 nm for holes and 150 nm for electrons. Our results show that films made of small QD films have longer diffusion lengths for holes and electrons. We also observe that wavelength illumination may have a small effect, with electrons showing a diffusion length of 500 and 420 nm under λ = 532 nm and λ = 635 nm illumination, respectively, which may be due to increased interactions between photocarriers for longer wavelengths with deeper penetration depths. Our results demonstrate an effective technique to calculate diffusion lengths of photogenerated electrons and holes and indicate that not only QD size but also wavelength illumination can play important roles in the diffusion and electrical transport of photocarriers in QD films.

3.
Nanoscale Adv ; 3(21): 6206-6212, 2021 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-36133947

RESUMO

Photodetectors based on colloidal quantum dots (CQDs) and single layer graphene (SLG) have shown high responsivity due to the synergy of strong light absorption from CQDs and high mobility from SLG. However, it is still challenging to achieve high-density and small-footprint devices on a chip to meet the demand for their integration into electronic devices. Even though there are numerous approaches to pattern the chemically fragile CQD films, usually they require non-conventional approaches such as stamping and surface modification that may be non-compatible with semiconductor processing. In this study, we show that conventional lithography and dry etching can be used to pattern QD active films by employing a graphene monolayer passivation/protective layer that protects the surface ligands of CQDs. This protective layer avoids damage induced by lithography process solvents that deteriorate the carrier mobility of CQDs and therefore the photoresponse. Herein we report patterning of CQDs using conventional UV photolithography, achieving reproducible five-micron length PbS CQDs/SLG photodetectors with a responsivity of 108 A W-1. We have also fabricated thirty-six PbS CQDs/SLG photodetectors on a single chip to establish micron size photodetectors. This process offers an approach to pattern QDs with conventional UV lithography and dry etching semiconductor technology to facilitate their integration into current semiconductor commercial technology.

4.
Nanoscale ; 12(8): 4909-4915, 2020 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-32064482

RESUMO

Quantum dots (QDs) offer several advantages in optoelectronics such as easy solution processing, strong light absorption and size tunable direct bandgap. However, their major limitation is their poor film mobility and short diffusion length (<250 nm). This has restricted the thickness of QD film to ∼200-300 nm due to the restriction that the diffusion length imposes on film thickness in order to keep efficient charge collection. Such thin films result in a significant decrease in quantum efficiency for λ > 700 nm in QDs photodetector and photovoltaic devices, causing a reduced photoresponsivity and a poor absorption towards the near-infrared part of the sunlight spectrum. Herein, we demonstrate 1 µm thick QDs photodetectors with intercalated graphene charge collectors that avoid the significant drop of quantum efficiency towards λ > 700 nm observed in most QD optoelectronic devices. The 1 µm thick intercalated QD films ensure strong light absorption while keeping efficient charge extraction with a quantum efficiency of 90%-70% from λ = 600 nm to 950 nm using intercalated graphene layers as charge collectors with interspacing distance of 100 nm. We demonstrate that the effect of graphene on light absorption is minimal. We achieve a time-modulation response of <1 s. We demonstrate that this technology can be implemented on flexible PET substrates, showing 70% of the original performance after 1000 times bending test. This system provides a novel approach towards high-performance photodetection and high conversion photovoltaic efficiency with quantum dots and on flexible substrates.

5.
J Chem Phys ; 151(23): 234705, 2019 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-31864279

RESUMO

Lead sulfide quantum dots (QDs) have been widely used for various optoelectronic devices due to their high absorption coefficient and tunable bandgap. However, the low mobility of QD films results in poor charge collection and device performance. By combining QDs with graphene into hybrid graphene/QD photodetectors, photocarriers from QDs are transferred to graphene, improving charge collection and transport, drastically increasing the photoresponsivity. Herein, we carry a systematic analysis on how critical tuning parameters such as QD size and QD film thickness affect responsivity, spectral response, and time response. We report the absorption coefficient, refractive index (n, k), penetration depth, and energy bandgap of PbS QDs of different sizes. We study systematically how the photocurrent, photoresponsivity, time response, and power density dependence vary with QD size in hybrid Gr/QD. The bandgap of lead sulfide quantum dots was size-tuned between 0.86 and 1.39 eV. The time response shows that subsecond modulation can be achieved for different QD sizes with a responsivity up to 107 A/W at power densities of 10-5 mW/cm2. We also studied how the performance of the photodetectors is affected by the thickness, discussing the limitations on the thickness by the compromise between light absorption and charge collection. We describe how the optical response shifts toward the infrared as QD films get thicker. Time responses below 1 s are obtained for graphene/QD devices with thickness from 150 nm to 1 µm. This systematic study provides important guidelines to design hybrid graphene/QD photodetectors and tune their spectral response and performance.

6.
Nanotechnology ; 30(47): 475703, 2019 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-31426031

RESUMO

Herein, we present an electrochemical functionalization strategy for high quality single-layer and multilayer chemical vapor deposited (CVD) graphene directly on a Si/SiO2 chip facilitating electronic interfacing. This method avoids oxidation and tearing of graphene basal planes. We demonstrate effective functionalization by D-(+)-biotin (Bio), 4-(phenyldiazenyl)-aniline (Dz), and gallic acid (Gall) using cyclic voltammetry. Raman spectroscopy and XPS are used to demonstrate effective functionalization. In order to evaluate the effect of the electrochemical functionalization on graphene properties, DC electrical conductivity, XPS, mobility, and carrier density analysis are presented. We show that this functionalization strategy does not degrade graphene mobility (103 cm2 V-1s-1). After functionalization we observe a rise in Fermi level of ∼0.06 eV. In addition, we prove sensing capabilities with a CVD graphene monolayer on the biotin/avidin system by electrical resistance measurements and electrochemical impedance spectroscopy reaching a detection of 2.5 ng ml-1. This paper demonstrates an effective strategy to functionalize high quality CVD graphene on a chip compatible with an electronic interface readout.

7.
Adv Mater ; 31(14): e1807894, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30761634

RESUMO

Charge collection is critical in any photodetector or photovoltaic device. Novel materials such as quantum dots (QDs) have extraordinary light absorption properties, but their poor mobility and short diffusion length limit efficient charge collection using conventional top/bottom contacts. In this work, a novel architecture based on multiple intercalated chemical vapor deposition graphene monolayers distributed in an orderly manner inside a QD film is studied. The intercalated graphene layers ensure that at any point in the absorbing material, photocarriers will be efficiently collected and transported. The devices with intercalated graphene layers have superior quantum efficiency over single-bottom graphene/QD devices, overcoming the known restriction that the diffusion length imposes on film thickness. QD film with increased thickness shows efficient charge collection over the entire λ ≈ 500-1000 nm spectrum. This architecture could be applied to boost the performance of other low-cost materials with poor mobility, allowing efficient collection for films thicker than their diffusion length.

8.
ACS Appl Mater Interfaces ; 10(34): 28262-28268, 2018 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-30113804

RESUMO

A novel layer-by-layer three-dimensional (3D) architecture allowing one to expand device fabrication in the vertical direction and integrating functional nanomaterials is presented by emulating civil engineering. The architecture uses SU-8 pillars as structural columns, which support multiple horizontal suspended thin films. The films then serve as platforms for the integration of nanomaterials and nanodevices. Multiple graphene layers suspended across SU-8 pillars with precise control on their vertical spacing are demonstrated. In addition to graphene, silicon nitride films that offer high strength yield and thickness control are also presented. Metallic microstructures, plasmonic nanostructures, semiconducting quantum dots, and monolayer graphene on the suspended films are achieved to prove the capability of integrating functional nanomaterials. This work provides the potential to integrate highly compact micro/nanoscale devices at different vertical levels with high surface density, which allows for more capabilities and functionalities in a single device.

9.
Nano Lett ; 14(8): 4280-5, 2014 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-25058004

RESUMO

The optical transparency and high electron mobility of graphene make it an attractive material for photovoltaics. We present a field-effect solar cell using graphene to form a tunable junction barrier with an Earth-abundant and low cost zinc phosphide (Zn3P2) thin-film light absorber. Adding a semitransparent top electrostatic gate allows for tuning of the graphene Fermi level and hence the energy barrier at the graphene-Zn3P2 junction, going from an ohmic contact at negative gate voltages to a rectifying barrier at positive gate voltages. We perform current and capacitance measurements at different gate voltages in order to demonstrate the control of the energy barrier and depletion width in the zinc phosphide. Our photovoltaic measurements show that the efficiency conversion is increased 2-fold when we increase the gate voltage and the junction barrier to maximize the photovoltaic response. At an optimal gate voltage of +2 V, we obtain an open-circuit voltage of V oc = 0.53 V and an efficiency of 1.9% under AM 1.5 1-sun solar illumination. This work demonstrates that the field effect can be used to modulate and optimize the response of photovoltaic devices incorporating graphene.

10.
Nanoscale ; 4(18): 5718-23, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-22885910

RESUMO

Active control of ion transport plays important roles in chemical and biological analytical processes. Nanofluidic systems hold the promise for such control through electrostatic interaction between ions and channel surfaces. Most existing experiments rely on planar geometry where the nanochannels are generally very long and shallow with large aspect ratios. Based on this configuration the concepts of nanofluidic gating and rectification have been successfully demonstrated. However, device minimization and throughput scaling remain significant challenges. We report here an innovative and facile realization of hetero-structured Al(2)O(3)/SiO(2) (Si) nanopore array membranes by using pattern transfer of self-organized nanopore structures of anodic aluminum oxide (AAO). Thanks to the opposite surface charge states of Al(2)O(3) (positive) and SiO(2) (negative), the membrane exhibits clear rectification of ion current in electrolyte solutions with very low aspect ratios compared to previous approaches. Our hetero-structured nanopore arrays provide a valuable platform for high throughput applications such as molecular separation, chemical processors and energy conversion.

11.
Nano Lett ; 12(8): 4300-4, 2012 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-22800198

RESUMO

Photovoltaics (PV) are a promising source of clean renewable energy, but current technologies face a cost-to-efficiency trade-off that has slowed widespread implementation. We have developed a PV architecture-screening-engineered field-effect photovoltaics (SFPV)-that in principle enables fabrication of low-cost, high efficiency PV from virtually any semiconductor, including the promising but hard-to-dope metal oxides, sulfides, and phosphides. Prototype SFPV devices have been constructed and are found to operate successfully in accord with model predictions.

12.
ACS Nano ; 6(6): 5474-81, 2012 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-22594808

RESUMO

The development of nanoscale lithographic methods on polymer materials is a key requirement to improve the spatial resolution and performance of flexible devices. Here, we report the fabrication of metallic nanostructures down to 20 and 50 nm in size on polymer materials such as polyimide, parylene, SU-8, and PDMS substrates without any resist processing using stencil lithography. Metallic nanodot array analysis of their localized surface plasmon spectra is included. We demonstrate plasmon resonance detection of biotin and streptavidin using a PDMS flexible film with gold nanodots. We also demonstrate the fabrication of metallic nanowires on polyimide substrates with their electrical characteristics showing an ohmic behavior. These results demonstrate high-resolution nanopatterning and device nanofabrication capability of stencil lithography on polymer and flexible substrates.


Assuntos
Técnicas Biossensoriais/instrumentação , Imunoensaio/instrumentação , Impressão Molecular/métodos , Nanopartículas/química , Nanopartículas/ultraestrutura , Polímeros/química , Ressonância de Plasmônio de Superfície/instrumentação , Módulo de Elasticidade , Desenho de Equipamento , Análise de Falha de Equipamento
13.
PLoS One ; 7(3): e32667, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22412903

RESUMO

Several copy number-altered regions (CNAs) have been identified in the genome of cervical cancer, notably, amplifications of 3q and 5p. However, the contribution of copy-number alterations to cervical carcinogenesis is unresolved because genome-wide there exists a lack of correlation between copy-number alterations and gene expression. In this study, we investigated whether CNAs in the cell lines CaLo, CaSki, HeLa, and SiHa were associated with changes in gene expression. On average, 19.2% of the cell-line genomes had CNAs. However, only 2.4% comprised minimal recurrent regions (MRRs) common to all the cell lines. Whereas 3q had limited common gains (13%), 5p was entirely duplicated recurrently. Genome-wide, only 15.6% of genes located in CNAs changed gene expression; in contrast, the rate in MRRs was up to 3 times this. Chr 5p was confirmed entirely amplified by FISH; however, maximum 33.5% of the explored genes in 5p were deregulated. In 3q, this rate was 13.4%. Even in 3q26, which had 5 MRRs and 38.7% recurrently gained SNPs, the rate was only 15.1%. Interestingly, up to 19% of deregulated genes in 5p and 73% in 3q26 were downregulated, suggesting additional factors were involved in gene repression. The deregulated genes in 3q and 5p occurred in clusters, suggesting local chromatin factors may also influence gene expression. In regions amplified discontinuously, downregulated genes increased steadily as the number of amplified SNPs increased (p<0.01, Spearman's correlation). Therefore, partial gene amplification may function in silencing gene expression. Additional genes in 1q, 3q and 5p could be involved in cervical carcinogenesis, specifically in apoptosis. These include PARP1 in 1q, TNFSF10 and ECT2 in 3q and CLPTM1L, AHRR, PDCD6, and DAP in 5p. Overall, gene expression and copy-number profiles reveal factors other than gene dosage, like epigenetic or chromatin domains, may influence gene expression within the entirely amplified genome segments.


Assuntos
Amplificação de Genes , Regulação Neoplásica da Expressão Gênica , Neoplasias do Colo do Útero/genética , Linhagem Celular , Aberrações Cromossômicas , Variações do Número de Cópias de DNA , Feminino , Perfilação da Expressão Gênica , Genoma Humano , Humanos , Anotação de Sequência Molecular , Polimorfismo de Nucleotídeo Único , Transdução de Sinais
14.
Nanoscale ; 4(3): 773-8, 2012 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-22170588

RESUMO

This work reports on a considerable resolution improvement of micro/nanostencil lithography when applied on full-wafer scale by using compliant membranes to reduce gap-induced pattern blurring. Silicon nitride (SiN) membranes are mechanically decoupled from a rigid silicon (Si) frame by means of four compliant, protruding cantilevers. When pressing the stencil into contact with a surface to be patterned, the membranes thus adapt to the surface independently and reduce the gap between the membrane and the substrate even over large, uneven surfaces. Finite element modeling (FEM) simulations show that compliant membranes can deflect vertically 40 µm which is a typical maximal non-planarity observed in standard Si wafers, due to polishing. Microapertures in the stencil membrane are defined by UV lithography and nanoapertures, down to 200 nm in diameter, using focused ion beam (FIB). A thin aluminium (Al) layer is deposited through both compliant and non-compliant membranes on a Si wafer, for comparison. The blurring in the case of compliant membranes is up to 95% reduced on full-wafer scale compared to standard (non-compliant) membranes.

15.
ACS Nano ; 5(2): 844-53, 2011 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-21192666

RESUMO

The fabrication of gold nanodots by stencil lithography and its application for optical biosensing based on localized surface plasmon resonance are presented. Arrays of 50-200 nm wide nanodots with different spacing of 50-300 nm are fabricated without any resist, etching, or lift-off process. The dimensions and morphology of the nanodots were characterized by scanning electron and atomic force microscopy. The fabricated nanodots showed localized surface plasmon resonance in their extinction spectra in the visible range. The resonance wavelength depends on the periodicity and dimensions of the nanodots. Bulk refractive index measurements and model biosensing of streptavidin were successfully performed based on the plasmon resonance shift induced by local refractive index change when biomolecules are adsorbed on the nanodots. These results demonstrate the potential of stencil lithography for the realization of plasmon-based biosensing devices.


Assuntos
Nanopartículas Metálicas/química , Nanotecnologia/métodos , Impressão/métodos , Ressonância de Plasmônio de Superfície/métodos , Biotina/metabolismo , Vidro/química , Ouro/química , Tamanho da Partícula , Silício/química , Estreptavidina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...