Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Neuroscience ; 545: 86-110, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38484836

RESUMO

Volitional signals for gaze control are provided by multiple parallel pathways converging on the midbrain superior colliculus (SC), whose deeper layers output to the brainstem gaze circuits. In the first of two papers (Takahashi and Veale, 2023), we described the properties of gaze behavior of several species under both laboratory and natural conditions, as well as the current understanding of the brainstem and spinal cord circuits implementing gaze control in primate. In this paper, we review the parallel pathways by which sensory and task information reaches SC and how these sensory and task signals interact within SC's multilayered structure. This includes both bottom-up (world statistics) signals mediated by sensory cortex, association cortex, and subcortical structures, as well as top-down (goal and task) influences which arrive via either direct excitatory pathways from cerebral cortex, or via indirect basal ganglia relays resulting in inhibition or dis-inhibition as appropriate for alternative behaviors. Models of attention such as saliency maps serve as convenient frameworks to organize our understanding of both the separate computations of each neural pathway, as well as the interaction between the multiple parallel pathways influencing gaze. While the spatial interactions between gaze's neural pathways are relatively well understood, the temporal interactions between and within pathways will be an important area of future study, requiring both improved technical methods for measurement and improvement of our understanding of how temporal dynamics results in the observed spatiotemporal allocation of gaze.


Assuntos
Primatas , Colículos Superiores , Colículos Superiores/fisiologia , Animais , Primatas/fisiologia , Humanos , Vias Visuais/fisiologia , Atenção/fisiologia , Fixação Ocular/fisiologia
2.
Neuroscience ; 532: 133-163, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37776945

RESUMO

Organisms control their visual worlds by moving their eyes, heads, and bodies. This control of "gaze" or "looking" is key to survival and intelligence, but our investigation of the underlying neural mechanisms in natural conditions is hindered by technical limitations. Recent advances have enabled measurement of both brain and behavior in freely moving animals in complex environments, expanding on historical head-fixed laboratory investigations. We juxtapose looking behavior as traditionally measured in the laboratory against looking behavior in naturalistic conditions, finding that behavior changes when animals are free to move or when stimuli have depth or sound. We specifically focus on the brainstem circuits driving gaze shifts and gaze stabilization. The overarching goal of this review is to reconcile historical understanding of the differential neural circuits for different "classes" of gaze shift with two inconvenient truths. (1) "classes" of gaze behavior are artificial. (2) The neural circuits historically identified to control each "class" of behavior do not operate in isolation during natural behavior. Instead, multiple pathways combine adaptively and non-linearly depending on individual experience. While the neural circuits for reflexive and voluntary gaze behaviors traverse somewhat independent brainstem and spinal cord circuits, both can be modulated by feedback, meaning that most gaze behaviors are learned rather than hardcoded. Despite this flexibility, there are broadly enumerable neural pathways commonly adopted among primate gaze systems. Parallel pathways which carry simultaneous evolutionary and homeostatic drives converge in superior colliculus, a layered midbrain structure which integrates and relays these volitional signals to brainstem gaze-control circuits.


Assuntos
Movimentos Oculares , Movimentos da Cabeça , Animais , Primatas , Tronco Encefálico , Retroalimentação , Fixação Ocular , Colículos Superiores , Movimentos Sacádicos
3.
J Neurophysiol ; 125(2): 437-457, 2021 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-33356912

RESUMO

Saccades are stereotypic behaviors whose investigation improves our understanding of how primate brains implement precise motor control. Furthermore, saccades offer an important window into the cognitive and attentional state of the brain. Historically, saccade studies have largely relied on macaques. However, the cortical network giving rise to the saccadic command is difficult to study in macaques because relevant cortical areas lie in deep sulci and are difficult to access. Recently, a New World monkey. the marmoset, has garnered attention as an alternative to macaques because of advantages including its smooth cortical surface. However, adoption of the marmoset for oculomotor research has been limited due to a lack of in-depth descriptions of marmoset saccade kinematics and their ability to perform psychophysical tasks. Here, we directly compare free-viewing and visually guided behavior of marmoset, macaque, and human engaged in identical tasks under similar conditions. In the video free-viewing task, all species exhibited qualitatively similar saccade kinematics up to 25° in amplitude although with different parameters. Furthermore, the conventional bottom-up saliency model predicted gaze targets at similar rates for all species. We further verified their visually guided behavior by training them with step and gap saccade tasks. In the step paradigm, marmosets did not show shorter saccade reaction time for upward saccades whereas macaques and humans did. In the gap paradigm, all species showed similar gap effect and express saccades. Our results suggest that the marmoset can serve as a model for oculomotor, attentional, and cognitive research while we need to be aware of their difference from macaque or human.NEW & NOTEWORTHY We directly compared the results of a video free-viewing task and visually guided saccade tasks (step and gap) among three different species: marmoset, macaque, and human. We found that all species exhibit qualitatively similar saccadic kinematics and saliency-driven saccadic behavior albeit with different parameters. Our results suggest that the marmoset possesses similar neural mechanisms to macaque and human for saccadic control, and it is an appropriate model to study neural mechanisms for active vision and attention.


Assuntos
Atenção , Movimentos Sacádicos , Adulto , Animais , Fenômenos Biomecânicos , Encéfalo/fisiologia , Callithrix , Feminino , Humanos , Macaca , Masculino , Especificidade da Espécie , Percepção Visual
4.
Artigo em Inglês | MEDLINE | ID: mdl-28044023

RESUMO

Inherent in visual scene analysis is a bottleneck associated with the need to sequentially sample locations with foveating eye movements. The concept of a 'saliency map' topographically encoding stimulus conspicuity over the visual scene has proven to be an efficient predictor of eye movements. Our work reviews insights into the neurobiological implementation of visual salience computation. We start by summarizing the role that different visual brain areas play in salience computation, whether at the level of feature analysis for bottom-up salience or at the level of goal-directed priority maps for output behaviour. We then delve into how a subcortical structure, the superior colliculus (SC), participates in salience computation. The SC represents a visual saliency map via a centre-surround inhibition mechanism in the superficial layers, which feeds into priority selection mechanisms in the deeper layers, thereby affecting saccadic and microsaccadic eye movements. Lateral interactions in the local SC circuit are particularly important for controlling active populations of neurons. This, in turn, might help explain long-range effects, such as those of peripheral cues on tiny microsaccades. Finally, we show how a combination of in vitro neurophysiology and large-scale computational modelling is able to clarify how salience computation is implemented in the local circuit of the SC.This article is part of the themed issue 'Auditory and visual scene analysis'.


Assuntos
Movimentos Oculares , Colículos Superiores/fisiologia , Percepção Visual , Animais , Sinais (Psicologia) , Humanos , Movimentos Sacádicos
5.
Neurosci Res ; 78: 90-4, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-23916830

RESUMO

Recently the authors showed that a computational model of visual saliency could account for changes in gaze behavior of monkeys with damage in the primary visual cortex. Here we propose a neural prosthesis to restore eye gaze behavior by electrically stimulating the superior colliculus to drive visual attention. The saliency computational model is used to calculate the stimulation parameters from a real-time camera stream. Our simulations demonstrate that electrodes implanted in the superior colliculus at 1.0mm spacing are, in principle, able to recover specifically those visual attention behaviors which are lost when the primary visual cortex is damaged.


Assuntos
Atenção/fisiologia , Terapia por Estimulação Elétrica/métodos , Próteses Neurais , Transtornos da Visão/terapia , Percepção Visual/fisiologia , Simulação por Computador , Movimentos Oculares/fisiologia , Humanos , Modelos Neurológicos , Colículos Superiores/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA