Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mar Environ Res ; 130: 233-247, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28807410

RESUMO

Faunal assemblages of subtidal sedimentary environments are key components of coastal ecosystems. Benthic communities inhabiting the coastal zone near urban centers in Concepción Bay (Chile) have been described as highly disturbed (i.e. impoverished in diversity and species richness). This is due to the frequent presence of hypoxic conditions at the bottom due to the intrusion of low oxygen Equatorial Subsurface Water, high natural productivity and the high load of organic matter generated by several anthropogenic activities. A mega-earthquake (8.8 Mw) and subsequent tsunami occurred on the coast of south-central Chile on February 27, 2010 (27F), heavily impacting Concepción Bay, which is located 30 km south of the epicenter. The objectives of the present study are: (i) to evaluate the effect produced by the mega-earthquake and tsunami on the benthic community, and (ii) to assess dissimilarity in macrofauna composition and abundance in Concepción Bay at an inter-decadal time scale based on a comparison between our sampling conducted between 2010 and 2013 and information published since 1969. Our results show that the benthic macrofauna of Concepción Bay was disturbed by the 27F (i.e. high community dissimilarity in 2010). Changes in community structure were observed at an inter-annual scale (i.e. diminished community dissimilarity in 2013), suggesting a recovery post-27F. At an inter-decadal scale, community structure post-27F was dissimilar to the structure described for the 1980's and 1990's but more similar to that reported for 1969. The reducing conditions of the sediments due to the high input of organic matter that took place in the 1980's and 1990's may explain this dissimilarity.


Assuntos
Terremotos , Ecossistema , Tsunamis , Brasil , Chile
2.
PLoS One ; 12(7): e0179023, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28715447

RESUMO

In January 2008 there was an intensive and extensive upwelling event in the southern Humboldt Current System. This event produced an intrusion of water with low dissolved oxygen into Coliumo Bay, which caused massive mortality and the beaching of pelagic and benthic organisms, including zooplankton. During this event, which lasted 3 to 5 days, we studied and evaluated the effect of the hypoxic water in the bay on the abundance of macrozooplankton, nanoplankton and microphytoplankton, the concentration of several nutrients and hydrographic conditions. At the beginning of the hypoxia event the water column had very low dissolved oxygen concentrations (<0.5 mL O2 L-1), low temperatures and high salinity which are characteristics of the oxygen minimum zone from the Humboldt Current System. Redox, pH, nitrate, phosphate, silicate and chlorophyll-a values were the lowest, while nitrate and the phaeopigment values were the highest. The N:P ratio was below 16, and the abundance of nano- and microphytoplankton were at their lowest, the latter also with the lowest proportion of live organisms. Macrozooplankton had the greatest abundance during hypoxia, dominated mainly by crustacean, fish eggs and amphipods. The hypoxia event generated a strong short-term alteration of all biotic and abiotic components of the pelagic system in Coliumo Bay and the neighboring coastal zone. These negative effects associated with strong natural hypoxia events could have important consequences for the productivity and ecosystem functioning of the coastal zone of the Humboldt Current System if, as suggested by several models, winds favorable to upwelling should increase due to climate change. The effects of natural hypoxia in this coastal zone can be dramatic especially for pelagic and benthic species not adapted to endure conditions of low dissolved oxygen.


Assuntos
Baías , Ecossistema , Oxigênio/análise , Mudança Climática , Temperatura , Água
3.
Mar Environ Res ; 79: 16-28, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22626877

RESUMO

In January 2008, most of the southern coastal zone of the Humboldt Current System was affected by an intense upwelling event. This caused an intrusion of equatorial sub-surface water into the coastal zone, generating severe hypoxic conditions (≤0.5 ml O(2) l(-1)) three days after the beginning of the event. A rapid, massive die-off of marine organisms occurred in Coliumo Bay on January 3rd, affecting zooplankton, mollusks, crustaceans and fishes. Normal oxygen concentrations were observed on January 10th, seven days after the hypoxic event. Here we analyze the response of the epibenthic macrofauna community using data spanning three years of sampling which encompass the short-term hypoxic disturbance in the bay. We found that (i) strong changes in total density, total biomass, and diversity occurred immediately after the hypoxic event, negatively affecting crustaceans and fishes, while gastropods were favored, (ii) initial changes were reverted over a period of three months, (iii) on an inter-annual time scale, species richness and diversity decreased following the hypoxic event. Total density increased strongly, but total biomass showed no clear inter-annual trend. These results show that, while initial recovery from hypoxia was fast, over longer time scales the community exhibited a shift to an alternative structure dominated principally by Nassariid scavenger species.


Assuntos
Anaerobiose/fisiologia , Baías , Ecossistema , Peixes/fisiologia , Invertebrados/fisiologia , Movimentos da Água , Animais , Biodiversidade , Chile , Água do Mar/química
4.
Mar Environ Res ; 78: 1-14, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22521572

RESUMO

The Humboldt Current System (HCS) has one of the three most important oxygen minimum zones (OMZ) of the global ocean. Several studies have looked at the macrofaunal benthic assemblages inhabiting the continental shelf and shallow bays off central-southern Chile associated with low oxygen areas, but little is known about open coast macrofaunal communities within this zone, which are frequently subjected to the low oxygen conditions of Equatorial Subsurface Waters (ESSW). In order to assess local and mesoscale coastal macrofauna dynamics, the sampling area (ca. 40 linear km) was divided into seven local zones (Cobquecura, southern Cobquecura, northern Itata, Itata River mouth, external, southern Itata, and Coliumo). Eight oceanographic cruises were carried out between May 2006 and February 2008 covering 16 coastal sampling sites, between 36°07'S and 36°30'S. The macrofaunal assemblage was dominated by polychaetes, crustaceans, and mollusks. Our results suggest a high degree of temporal faunal stability on the mesoscale in soft bottom communities along the open coast, given the persistence of a faunal assemblage dominated by organisms tolerant of low oxygen conditions. While there is some local variability in community attributes, the main structuring factor for soft bottom communities in the shallow coastal area off central-southern Chile is the seasonal intrusion of low oxygen ESSW.


Assuntos
Biodiversidade , Oxigênio/análise , Animais , Biomassa , Chile , Crustáceos , Sedimentos Geológicos/análise , Moluscos , Oceanos e Mares , Tamanho da Partícula , Poliquetos , Salinidade , Estações do Ano , Água do Mar/análise , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...