Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Phys Rev Lett ; 117(9): 096801, 2016 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-27610871

RESUMO

High-mobility complex-oxide heterostructures and nanostructures offer new opportunities for extending the paradigm of quantum transport beyond the realm of traditional III-V or carbon-based materials. Recent quantum transport investigations with LaAlO_{3}/SrTiO_{3}-based quantum dots reveal the existence of a strongly correlated phase in which electrons form spin-singlet pairs without becoming superconducting. Here, we report evidence for the micrometer-scale ballistic transport of electron pairs in quasi-1D LaAlO_{3}/SrTiO_{3} nanowire cavities. In the paired phase, Fabry-Perot-like quantum interference is observed, in sync with conductance oscillations observed in the superconducting regime (at a zero magnetic field). Above a critical magnetic field B_{p}, the electron pairs unbind and the conductance oscillations shift with the magnetic field. These experimental observations extend the regime of ballistic electronic transport to strongly correlated phases.

2.
Sci Rep ; 6: 23517, 2016 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-27009596

RESUMO

The bacterium Geobacter sulfurreducens requires the expression of conductive protein filaments or pili to respire extracellular electron acceptors such as iron oxides and uranium and to wire electroactive biofilms, but the contribution of the protein fiber to charge transport has remained elusive. Here we demonstrate efficient long-range charge transport along individual pili purified free of metal and redox organic cofactors at rates high enough to satisfy the respiratory rates of the cell. Carrier characteristics were within the orders reported for organic semiconductors (mobility) and inorganic nanowires (concentration), and resistivity was within the lower ranges reported for moderately doped silicon nanowires. However, the pilus conductance and the carrier mobility decreased when one of the tyrosines of the predicted axial multistep hopping path was replaced with an alanine. Furthermore, low temperature scanning tunneling microscopy demonstrated the thermal dependence of the differential conductance at the low voltages that operate in biological systems. The results thus provide evidence for thermally activated multistep hopping as the mechanism that allows Geobacter pili to function as protein nanowires between the cell and extracellular electron acceptors.


Assuntos
Transporte de Elétrons , Proteínas de Fímbrias/metabolismo , Fímbrias Bacterianas/química , Geobacter/fisiologia , Condutividade Elétrica , Compostos Férricos/química , Proteínas de Fímbrias/química , Fímbrias Bacterianas/metabolismo , Microscopia de Tunelamento , Modelos Moleculares , Nanofios/química , Temperatura , Urânio/química
3.
Nature ; 521(7551): 196-9, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25971511

RESUMO

Strontium titanate (SrTiO3) is the first and best known superconducting semiconductor. It exhibits an extremely low carrier density threshold for superconductivity, and possesses a phase diagram similar to that of high-temperature superconductors--two factors that suggest an unconventional pairing mechanism. Despite sustained interest for 50 years, direct experimental insight into the nature of electron pairing in SrTiO3 has remained elusive. Here we perform transport experiments with nanowire-based single-electron transistors at the interface between SrTiO3 and a thin layer of lanthanum aluminate, LaAlO3. Electrostatic gating reveals a series of two-electron conductance resonances-paired electron states--that bifurcate above a critical pairing field Bp of about 1-4 tesla, an order of magnitude larger than the superconducting critical magnetic field. For magnetic fields below Bp, these resonances are insensitive to the applied magnetic field; for fields in excess of Bp, the resonances exhibit a linear Zeeman-like energy splitting. Electron pairing is stable at temperatures as high as 900 millikelvin, well above the superconducting transition temperature (about 300 millikelvin). These experiments demonstrate the existence of a robust electronic phase in which electrons pair without forming a superconducting state. Key experimental signatures are captured by a model involving an attractive Hubbard interaction that describes real-space electron pairing as a precursor to superconductivity.

4.
Nanotechnology ; 24(37): 375201, 2013 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-23965953

RESUMO

We report quasi-1D superconductivity at the interface of LaAlO3 and SrTiO3. The material system and nanostructure fabrication method supply a new platform for superconducting nanoelectronics. Nanostructures having line widths w ~ 10 nm are formed from the parent two-dimensional electron liquid using conductive atomic force microscope lithography. Nanowire cross-sections are small compared to the superconducting coherence length in LaAlO3/SrTiO3, placing them in the quasi-1D regime. Broad superconducting transitions versus temperature and finite resistances in the superconducting state well below Tc ≈ 200 mK are observed, suggesting the presence of fluctuation- and heating-induced resistance. The superconducting resistances and V-I characteristics are tunable through the use of a back gate. Four-terminal resistances in the superconducting state show an unusual dependence on the current path, varying by as much as an order of magnitude. This new technology, i.e., the ability to 'write' gate-tunable superconducting nanostructures on an insulating LaAlO3/SrTiO3 'canvas', opens possibilities for the development of new families of reconfigurable superconducting nanoelectronics.

5.
Nano Lett ; 13(2): 364-8, 2013 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-23305110

RESUMO

Nanoscale control of the metal-insulator transition at the interface between LaAlO(3) and SrTiO(3) provides a pathway for reconfigurable, oxide-based nanoelectronics. Four-terminal transport measurements of LaAlO(3)/SrTiO(3) nanowires at room temperature (T = 300 K) reveal an equivalent 2D Hall mobility greatly surpassing that of bulk SrTiO(3) and approaching that of n-type Si nanowires of comparable dimensions. This large enhancement of mobility is relevant for room-temperature device applications.

6.
Phys Rev E Stat Nonlin Soft Matter Phys ; 84(6 Pt 1): 060901, 2011 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22304032

RESUMO

The metal-reducing bacterium Geobacter sulfurreducens produces conductive protein appendages known as "pilus nanowires" to transfer electrons to metal oxides and to other cells. These processes can be harnessed for the bioremediation of toxic metals and the generation of electricity in bioelectrochemical cells. Key to these applications is a detailed understanding of how these nanostructures conduct electrons. However, to the best of our knowledge, their mechanism of electron transport is not known. We used the capability of scanning tunneling microscopy (STM) to probe conductive materials with higher spatial resolution than other scanning probe methods to gain insights into the transversal electronic behavior of native, cell-anchored pili. Despite the presence of insulating cellular components, the STM topography resolved electronic molecular substructures with periodicities similar to those reported for the pilus shaft. STM spectroscopy revealed electronic states near the Fermi level, consistent with a conducting material, but did not reveal electronic states expected for cytochromes. Furthermore, the transversal conductance was asymmetric, as previously reported for assemblies of helical peptides. Our results thus indicate that the Geobacter pilus shaft has an intrinsic electronic structure that could play a role in charge transport.


Assuntos
Condutividade Elétrica , Fímbrias Bacterianas/metabolismo , Geobacter/metabolismo , Metais/metabolismo , Microscopia de Tunelamento , Proteínas de Bactérias/metabolismo , Oxirredução
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...