Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Artigo em Inglês | MEDLINE | ID: mdl-36897075

RESUMO

Understanding the effect of surface chemistry on the dielectric-semiconductor interface, thin-film morphology, and molecular alignment enables the optimization of organic thin-film transistors (OTFTs). We explored the properties of thin films of bis(pentafluorophenoxy) silicon phthalocyanine (F10-SiPc) evaporated onto silicon dioxide (SiO2) surfaces modified by self-assembled monolayers (SAMs) of varying surface energies and by weak epitaxy growth (WEG). The total surface energy (γtot), dispersive component of the total surface energy (γd), and polar component of the total surface energy (γp) were calculated using the Owens-Wendt method and related to electron field-effect mobility of devices (µe), and it was determined that minimizing γp and matching γtot yielded films with the largest relative domain sizes and highest resulting µe. Subsequent analyses were completed using atomic force microscopy (AFM) and grazing-incidence wide-angle X-ray scattering (GIWAXS) to relate surface chemistry to thin-film morphology and molecular order at the surface and semiconductor-dielectric interface, respectively. Films evaporated on n-octyltrichlorosilane (OTS) yielded devices with the highest average µe of 7.2 × 10-2 cm2·V-1·s-1 that we attributed to it having both the largest domain length, which were extracted from power spectral density function (PSDF) analysis, and a subset of molecules with a pseudo edge-on orientation relative to the substrate. Films of F10-SiPc with the mean molecular orientation of the π-stacking direction being more edge-on relative to the substrate also generally resulted in OTFTs with a lower average VT. Unlike conventional MPcs, F10-SiPc films fabricated by WEG experienced no macrocycle in an edge-on configuration. These results demonstrate the critical role of the F10-SiPc axial groups on WEG, molecular orientation, and film morphology as a function of surface chemistry and the choice of SAMs.

2.
ACS Omega ; 8(1): 1588-1596, 2023 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-36643570

RESUMO

We demonstrate large-area (1 cm2) organic photovoltaic (OPVs) devices based on bis(tri-n-butylsilyl oxide) silicon phthalocyanine (3BS)2-SiPc as a non-fullerene acceptor (NFA) with low synthetic complexity paired with poly(3-hexylthiophene) (P3HT) as a donor polymer. Environment-friendly nonhalogenated solvents were used to process large area OPVs on flexible indium tin oxide (ITO)-coated polyethylene terephthalate (PET) substrates. An alternate sequentially (Alt-Sq) blade-coated active layer with bulk heterojunction-like morphology is obtained when using (3BS)2-SiPc processing with o-xylene/1,3,5-trimethylbenzene solvents. The sequential (Sq) active layer is prepared by first blade-coating (3BS)2-SiPc solution followed by P3HT coated on the top without any post-treatment. The conventional sequentially (Sq) blade-coated active layer presents very low performance due to the (3BS)2-SiPc bottom layer being partially washed off by processing the top layer of P3HT. In contrast, alternate sequentially (Alt-Sq) blade-coated layer-by-layer film shows even better device performance compared to the bulk heterojunction (BHJ) active layer. Time-of-flight secondary ion mass spectroscopy (TOF-SIMS) and atomic force microscopy (AFM) reveal that the Alt-Sq processing of the active layer leads to a BHJ-like morphology with a well-intermixed donor-acceptor component in the active layer while providing a simpler processing approach to low-cost and large-scale OPV production.

3.
RSC Adv ; 12(16): 10029-10036, 2022 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-35424912

RESUMO

Silicon phthalocyanines as ternary additives are a promising way to increase the performance of organic photovoltaics. The miscibility of the additive and the donor polymer plays a significant role in the enhancement of the device performance, therefore, ternary additives can be designed to better interact with the conjugated polymer. We synthesized N-9'-heptadecanyl-2,7-carbazole functionalized SiPc ((CBzPho)2-SiPc), a ternary additive with increased miscibility in poly[N-90-heptadecanyl-2,7-carbazole-alt-5,5-(4',7'-di-2-thienyl-2',1',3'-benzothiadiazole)] (PCDTBT). The resulting additive was included into PCDTBT and [6,6]-phenyl C71 butyric acid methyl ester as bulk (PC71BM) heterojunction OPV devices as a ternary additive. While the (CBzPho)2-SiPc demonstrated strong EQE >30% contribution in the range of 650-730 nm, the overall performance was reduced because (CBzPho)2-SiPc acted as a hole trap due to its high-lying HOMO energy level. This study demonstrates the importance of the solubility, miscibility, and energy level engineering of the ternary additive when designing organic photovoltaic devices.

4.
Sci Rep ; 11(1): 15347, 2021 Jul 28.
Artigo em Inglês | MEDLINE | ID: mdl-34321540

RESUMO

While the efficiency of organic photovoltaics (OPVs) has improved drastically in the past decade, such devices rely on exorbitantly expensive materials that are unfeasible for commercial applications. Moreover, examples of high voltage single-junction devices, which are necessary for several applications, particularly low-power electronics and rechargeable batteries, are lacking in literature. Alternatively, silicon phthalocyanines (R2-SiPc) are inexpensive, industrially scalable organic semiconductors, having a minimal synthetic complexity (SC) index, and are capable of producing high voltages when used as acceptors in OPVs. In the present work, we have developed high voltage OPVs composed of poly({4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b']dithiophene-2,6-diyl}{3-fluoro-2-[(2-ethylhexyl)carbonyl] thieno [3,4 b]thiophenediyl}) (PTB7) and an SiPc derivative ((3BS)2-SiPc). While changes to the solvent system had a strong effect on performance, interestingly, the PTB7:(3BS)2-SiPc active layer were robust to spin speed, annealing and components ratio. This invariance is a desirable characteristic for industrial production. All PTB7:(3BS)2-SiPc devices produced high open circuit voltages between 1.0 and 1.07 V, while maintaining 80% of the overall efficiency, when compared to their fullerene-based counterpart.

5.
ACS Appl Mater Interfaces ; 13(1): 1008-1020, 2021 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-33370100

RESUMO

Metal and metalloid phthalocyanines are an abundant and established class of materials widely used in the dye and pigment industry as well as in commercial photoreceptors. Silicon phthalocyanines (SiPcs) are among the highest-performing n-type semiconductor materials in this family when used in organic thin-film transistors (OTFTs) as their performance and solid-state arrangement are often increased through axial substitution. Herein, we study eight axially substituted SiPcs and their integration into solution-processed n-type OTFTs. Electrical characterization of the OTFTs, combined with atomic force microscopy (AFM), determined that the length of the alkyl chain affects device performance and thin-film morphology. The effects of high-temperature annealing and spin coating time on film formation, two key processing steps for fabrication of OTFTs, were investigated by grazing-incidence wide-angle X-ray scattering (GIWAXS) and X-ray diffraction (XRD) to elucidate the relationship between thin-film microstructure and device performance. Thermal annealing was shown to change both film crystallinity and SiPc molecular orientation relative to the substrate surface. Spin time affected film crystallinity, morphology, and interplanar d-spacing, thus ultimately modifying device performance. Of the eight materials studied, bis(tri-n-butylsilyl oxide) SiPc exhibited the greatest electron field-effect mobility (0.028 cm2 V-1 s-1, a threshold voltage of 17.6 V) of all reported solution-processed SiPc derivatives.

6.
Langmuir ; 36(10): 2612-2621, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-32093478

RESUMO

The use of ternary additives in organic photovoltaics is a promising route for improving overall device performance. Silicon phthalocyanines (SiPcs) are ideal candidates due to their absorption profile, low cost, and ease of synthesis and chemical tunability. However, to date, only a few examples have been reported and specific strategies for aiding in the design of improved ternary additives have not been established. In this study, we report a relationship between ternary additive solubility and device performance, demonstrating that device performance is maximized when the SiPc additive solubility is similar to that of the donor polymer (P3HT, in this case). This improved performance can be attributed to the favored interfacial precipitation of the SiPc when its solubility matches that of the other components of the thin film. The power conversion efficiency (PCE) varied from 2.4% to 3.4% by using axially substituted SiPcs with different solubilities, where the best ternary additive led to a 25% increase in PCE compared to that of the baseline device.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...