Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 119(1): 299-314, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34713893

RESUMO

This paper presents a straightforward approach for measuring and quantifying orthogonality directly in complex cell culture fluids (CCFs) without the requirement for tracking the retention behaviors of large sets of proteins. Null-producing CCFs were fractionated using linear salt gradients at constant pH on a set of multimodal resins. Fractions were then analyzed by ultraperformance-reversed phase liquid chromatography and the resulting chromatograms provided host cell protein (HCP) "fingerprints." Using these fingerprints, an inner product vector-based approach was employed to quantify the degree of orthogonality between pairs of resins and operating conditions for these large HCP protein sets. To compare resin orthogonality behavior in different expression systems, the Chinese hamster ovary and Pichia pastoris null-producing CCFs were examined. Orthogonality in multimodal systems was found to strongly depend on the expression system and the HCPs being screened. We also identified several unexpected pairs of multimodal resins within the same family that exhibited significant orthogonality. Furthermore, "self-orthogonality" was evaluated between resins operated at different pHs, and important operating regimes were identified for maximizing orthogonal selectivities. The framework developed in this paper for calculating orthogonality without the need for labor-intensive HCP tracking has important implications for efficient process development and resin/operating condition selection for both monoclonal antibody (mAb) polishing steps and non-mAb processes. In addition, this study provides a tool to unlock the untapped potential of multimodal resins by aiding in their rational selection and incorporation. Finally, the orthogonality framework here can facilitate the development of sets of next-generation multimodal resins specifically designed to provide highly orthogonal and efficient separations tailored for different expression systems.


Assuntos
Técnicas de Cultura de Células/métodos , Cromatografia de Fase Reversa/métodos , Ensaios de Triagem em Larga Escala/métodos , Proteínas Recombinantes , Animais , Células CHO , Cromatografia Líquida de Alta Pressão/métodos , Cricetinae , Cricetulus , Meios de Cultura/química , Concentração de Íons de Hidrogênio , Proteínas Recombinantes/análise , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Saccharomycetales
2.
J Chromatogr A ; 1628: 461429, 2020 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-32822971

RESUMO

Recent studies have shown that by combining orthogonal, non-affinity chromatography steps, it is possible to rapidly develop efficient purification processes for molecules of interest. Here, we build upon previous work to develop a flexible framework for identifying resins that remove optimally orthogonal sets of impurities for a wide variety of products. Our approach involves screening a library of proteins with diverse properties (pI ranging from 5.0-11.4 and varying hydrophobicity measured by retention in a HIC gradient) on a library of resins and quantifying each resin's ability to separate every protein pair in the library. Orthogonality is then defined as the degree to which two resins separate mutually exclusive sets of protein pairs. We applied this approach to a library of model proteins and a series of strong, salt tolerant, and multimodal ion exchangers and evaluated which resin combinations performed well and which performed poorly. In particular, we found that strong cation and strong anion exchangers were orthogonal, while strong and salt tolerant anion exchangers were not orthogonal. Interestingly, salt tolerant and multimodal cation exchangers were found to be orthogonal and the best resin combination included a multimodal cation exchange resin and a tentacular anion exchange resin. This approach for quantifying orthogonality is valuable in that it can be used both as a criteria for resin design as well as process design. We envision that, using this framework, it will be possible to design a set of next generation chromatography ligands that are explicitly engineered to optimize separability and orthogonality.


Assuntos
Resinas de Troca Aniônica/química , Resinas de Troca de Cátion/química , Cromatografia por Troca Iônica/métodos , Animais , Bovinos , Galinhas , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Proteínas/análise , Proteínas/química , Sais/química , Suínos
3.
Biotechnol Bioeng ; 116(9): 2178-2190, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31081177

RESUMO

Integrated designs of chromatographic processes for purification of biopharmaceuticals provides potential gains in operational efficiency and reductions of costs and material requirements. We describe a combined method using screening and in silico algorithms for ranking chromatographic steps to rapidly design orthogonally selective integrated processes for purifying protein therapeutics from both process- and product-related impurities. IFN-α2b produced in Pichia pastoris containing a significant product variant challenge was used as a case study. The product and product-related variants were screened on a set of 14 multimodal, ion exchange, and hydrophobic charge induction chromatography resins under various pH and salt linear gradient conditions. Data generated from reversed-phase chromatography of the fractions collected were used to generate a retention database for IFN-α2b and its variants. These data, in combination with a previously constructed process-related impurity database for P. pastoris, were input into an in silico process development tool that generated and ranked all possible integrated chromatographic sequences for their ability to remove both process and product-related impurities. Top-ranking outputs guided the experimental refinement of two successful three step purification processes, one comprising all bind-elute steps and the other having two bind-elute steps and a flowthrough operation. This approach suggests a new platform-like approach for rapidly designing purification processes for a range of proteins where separations of both process- and product-related impurities are needed.


Assuntos
Simulação por Computador , Interferon-alfa/química , Interferon-alfa/isolamento & purificação , Cromatografia por Troca Iônica , Pichia , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação
4.
Nat Biotechnol ; 2018 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-30272677

RESUMO

Conventional manufacturing of protein biopharmaceuticals in centralized, large-scale, single-product facilities is not well-suited to the agile production of drugs for small patient populations or individuals. Previous solutions for small-scale manufacturing are limited in both process reproducibility and product quality, owing to their complicated means of protein expression and purification. We describe an automated, benchtop, multiproduct manufacturing system, called Integrated Scalable Cyto-Technology (InSCyT), for the end-to-end production of hundreds to thousands of doses of clinical-quality protein biologics in about 3 d. Unlike previous systems, InSCyT includes fully integrated modules for sustained production, efficient purification without the use of affinity tags, and formulation to a final dosage form of recombinant biopharmaceuticals. We demonstrate that InSCyT can accelerate process development from sequence to purified drug in 12 weeks. We used integrated design to produce human growth hormone, interferon α-2b and granulocyte colony-stimulating factor with highly similar processes on this system and show that their purity and potency are comparable to those of marketed reference products.

5.
Biotechnol Bioeng ; 115(8): 2048-2060, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29679482

RESUMO

In this study, we describe a new approach for the characterization of process-related impurities along with an in silico tool to generate orthogonal, integrated downstream purification processes for biological products. A one-time characterization of process-related impurities from product expression in Pichia pastoris was first carried out using linear salt and pH gradients on a library of multimodal, salt-tolerant, and hydrophobic charge induction chromatographic resins. The Reversed-phase ultra-performance liquid chromatography (UPLC) analysis of the fractions from these gradients was then used to generate large data sets of impurity profiles. A retention database of the biological product was also generated using the same linear salt and pH gradients on these resins, without fraction collection. The resulting two data sets were then analyzed using an in silico tool, which incorporated integrated manufacturing constraints to generate and rank potential three-step purification sequences based on their predicted purification performance as well as whole-process "orthogonality" for impurity removal. Highly ranked sequences were further examined to identify templates for process development. The efficacy of this approach was successfully demonstrated for the rapid development of robust integrated processes for human growth hormone and granulocyte-colony stimulating factor.


Assuntos
Produtos Biológicos/isolamento & purificação , Produtos Biológicos/metabolismo , Biotecnologia/métodos , Pichia/crescimento & desenvolvimento , Pichia/metabolismo , Tecnologia Farmacêutica/métodos , Precipitação Química , Cromatografia Líquida de Alta Pressão , Concentração de Íons de Hidrogênio , Pichia/genética , Sais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...