Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Nature ; 626(8000): 752-758, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38326617

RESUMO

The relation between crystal symmetries, electron correlations and electronic structure steers the formation of a large array of unconventional phases of matter, including magneto-electric loop currents and chiral magnetism1-6. The detection of such hidden orders is an important goal in condensed-matter physics. However, until now, non-standard forms of magnetism with chiral electronic ordering have been difficult to detect experimentally7. Here we develop a theory for symmetry-broken chiral ground states and propose a methodology based on circularly polarized, spin-selective, angular-resolved photoelectron spectroscopy to study them. We use the archetypal quantum material Sr2RuO4 and reveal spectroscopic signatures that, despite being subtle, can be reconciled with the formation of spin-orbital chiral currents at the surface of the material8-10. As we shed light on these chiral regimes, our findings pave the way for a deeper understanding of ordering phenomena and unconventional magnetism.

2.
Nano Lett ; 23(17): 7782-7789, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37200109

RESUMO

The control of the Mott phase is intertwined with the spatial reorganization of the electronic states. Out-of-equilibrium driving forces typically lead to electronic patterns that are absent at equilibrium, whose nature is however often elusive. Here, we unveil a nanoscale pattern formation in the Ca2RuO4 Mott insulator. We demonstrate how an applied electric field spatially reconstructs the insulating phase that, uniquely after switching off the electric field, exhibits nanoscale stripe domains. The stripe pattern has regions with inequivalent octahedral distortions that we directly observe through high-resolution scanning transmission electron microscopy. The nanotexture depends on the orientation of the electric field; it is nonvolatile and rewritable. We theoretically simulate the charge and orbital reconstruction induced by a quench dynamics of the applied electric field providing clear-cut mechanisms for the stripe phase formation. Our results open the path for the design of nonvolatile electronics based on voltage-controlled nanometric phases.

3.
Nanomaterials (Basel) ; 13(6)2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36985900

RESUMO

The use of a cylindrical lens in femtosecond laser surface structuring is receiving attention to improve the processing efficiency. Here, we investigate the structures produced on a copper target, in air, by exploiting both spherical and cylindrical lenses for beam focusing, aiming at elucidating similarities and differences of the two approaches. The morphological features of the surface structures generated by ≈180 fs laser pulses at 1030 nm over areas of 8 × 8 mm2 were analyzed. For the spherical lens, micron-sized parallel channels are formed on the target surface, which is covered by subwavelength ripples and nanoparticles. Instead, the cylindrical lens leads to a surface decorated with ripples and nanoparticles with a negligible presence of micro-channels. Moreover, the morphological features achieved by focusing ≈180 fs laser pulses at 515 nm with the cylindrical lens and varying the scanning parameters were also studied. The experimental results evidence a direct effect of the hatch distance used in the scanning process on the target surface that contains dark and bright bands corresponding to regions where the rippled surface contains a richer decoration or a negligible redeposition of nanoparticles. Our findings can be of interest in large area surface structuring for the selection of the more appropriate focusing configuration according to the final application of the structured surface.

4.
Nanomaterials (Basel) ; 11(6)2021 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-34073645

RESUMO

Among all transition metal oxides, titanium dioxide (TiO2) is one of the most intensively investigated materials due to its large range of applications, both in the amorphous and crystalline forms. We have produced amorphous TiO2 thin films by means of room temperature ion-plasma assisted e-beam deposition, and we have heat-treated the samples to study the onset of crystallization. Herein, we have detailed the earliest stage and the evolution of crystallization, as a function of both the annealing temperature, in the range 250-1000 °C, and the TiO2 thickness, varying between 5 and 200 nm. We have explored the structural and morphological properties of the as grown and heat-treated samples with Atomic Force Microscopy, Scanning Electron Microscopy, X-ray Diffractometry, and Raman spectroscopy. We have observed an increasing crystallization onset temperature as the film thickness is reduced, as well as remarkable differences in the crystallization evolution, depending on the film thickness. Moreover, we have shown a strong cross-talking among the complementary techniques used displaying that also surface imaging can provide distinctive information on material crystallization. Finally, we have also explored the phonon lifetime as a function of the TiO2 thickness and annealing temperature, both ultimately affecting the degree of crystallinity.

5.
Adv Mater ; 33(32): e2100593, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34176160

RESUMO

In strongly correlated electron materials, the electronic, spin, and charge degrees of freedom are closely intertwined. This often leads to the stabilization of emergent orders that are highly sensitive to external physical stimuli promising opportunities for technological applications. In perovskite ruthenates, this sensitivity manifests in dramatic changes of the physical properties with subtle structural details of the RuO6 octahedra, stabilizing enigmatic correlated ground states, from a hotly debated superconducting state via electronic nematicity and metamagnetic quantum criticality to ferromagnetism. Here, it is demonstrated that the rotation of the RuO6 octahedra in the surface layer of Sr2 RuO4 generates new emergent orders not observed in the bulk material. Through atomic-scale spectroscopic characterization of the low-energy electronic states, four van Hove singularities are identified in the vicinity of the Fermi energy. The singularities can be directly linked to intertwined nematic and checkerboard charge order. Tuning of one of these van Hove singularities by magnetic field is demonstrated, suggesting that the surface layer undergoes a Lifshitz transition at a magnetic field of ≈32T. The results establish the surface layer of Sr2 RuO4 as an exciting 2D correlated electron system and highlight the opportunities for engineering the low-energy electronic states in these systems.

6.
Sci Rep ; 10(1): 21062, 2020 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-33273484

RESUMO

The low-energy electronic structure, including the Fermi surface topology, of the itinerant metamagnet [Formula: see text] is investigated for the first time by synchrotron-based angle-resolved photoemission. Well-defined quasiparticle band dispersions with matrix element dependencies on photon energy or photon polarization are presented. Four bands crossing the Fermi-level, giving rise to four Fermi surface sheets are resolved; and their complete topography, effective mass as well as their electron and hole character are determined. These data reveal the presence of kink structures in the near-Fermi-level band dispersion, with energies ranging from 30 to 69 meV. Together with previously reported Raman spectroscopy and lattice dynamic calculation studies, the data suggest that these kinks originate from strong electron-phonon coupling present in [Formula: see text]. Considering that the kink structures of [Formula: see text] are similar to those of the other three members of the Ruddlesden Popper structured ruthenates, the possible universality of strong coupling of electrons to oxygen-related phonons in [Formula: see text] compounds is proposed.

7.
Int J Legal Med ; 134(2): 625-635, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-31065793

RESUMO

OBJECTIVE: To report routine practice of "perimortem" CT-scan imaging to determine the causes of death in children dying from severe accidental injuries within the first hours following hospital admission. SETTINGS: Trauma center of a University Pediatric Hospital. METHODS: A retrospective study was conducted in children (0 to 15 years old) referred for severe trauma (GCS ≤ 8) to a regional pediatric trauma center, presenting with at least spontaneous cardiac rhythm and dying within the first 12 h after admission. "Perimortem" CT-scan consisted in high-resolution, contrast-enhanced, full-body CT-scan imaging, performed whatever child's clinical status. Lethal and associated lesions found were analyzed and classified according to validated scales. The comparison between clinical and radiological examinations and CT-scan findings evaluated the accuracy of clinical examination to predict lethal lesions. RESULTS: CT-scan performed in 73 children detected 132 potentially lethal lesions, at least 2 lesions in 63%, and 1 in 37% of the cases. More frequent lethal lesions were brain (43%), and chest injuries (33%), followed by abdominal (12%), and cervical spine injuries (12%). Clinical and minimal radiological examinations were poorly predictive for identifying abdominal/chest lesions. Clinical and imaging data provided to the medical examiner were considered sufficient to identify the cause of death, and to deliver early burial certificates in 70 children. Only three legal autopsies were commanded. CONCLUSIONS: Perimortem CT imaging could provide an insight into the causes of death in traumatized children. Performed on an emergency basis near death, it eliminates the difficulties encountered in forensic radiology. It could be a possible alternative to full-scale forensic examination, at least regarding elucidation of the potential, or highly probable causes of death.


Assuntos
Lesões Acidentais/diagnóstico por imagem , Lesões Acidentais/mortalidade , Causas de Morte , Medicina Legal , Tomografia Computadorizada por Raios X , Imagem Corporal Total , Adolescente , Criança , Pré-Escolar , Feminino , França/epidemiologia , Hospitais Pediátricos , Humanos , Lactente , Masculino , Valor Preditivo dos Testes , Estudos Retrospectivos , Centros de Traumatologia , Índices de Gravidade do Trauma
8.
Polymers (Basel) ; 11(7)2019 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-31330964

RESUMO

This paper shows that an eco-friendly electrospinning process allows us to produce water resistant sound absorbers with reduced thickness and excellent sound-absorption properties in the low and medium frequency range (250-1600 Hz) for which which human sensitivity is high and traditional materials struggle to match, that also pass the fire tests which are mandatory in many engineering areas. The structure and composition were studied through Scanning Electron Microscopy (SEM), Fourier Transform InfraRed (FTIR) Spectroscopy and ThermoGravimetric Analysis (TGA). The density, porosity and flow resistivity were measured. Preliminary investigation of the thermal conductivity through Differential Scanning Calorimetry (DSC) shows that they have perspectives also for thermal insulation. The experimental results indicate that the achievements are to be ascribed to the chemical nature of Polyvinylpyrrolidone (PVP). PVP is, in fact, a polymeric lactam with a side polar group that may be easily released by a thermooxidative process. The side polar groups allow for using ethanol for electrospinning than relying on a good dispersion of silica gel particles. The silica particles dimensionally stabilize the mats upon thermal treatments and confer water resistance while strongly contributing to the self-extinguishing property of the materials.

9.
Surg Neurol Int ; 9: 215, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30505617

RESUMO

Background: Infants with sagittal suture synostosis often present a pathologic dilatation of subarachnoid spaces. The impact of such subarachnoid spaces' enlargement in the morphology of the skull, especially on the forehead and on the surgical outcome, was analyzed. Methods: Children less than 6 months of age undergoing a surgical correction of the scaphocephaly with Renier's H technique between 2003 and 2008 were included in the study. In these patients, preoperative and postoperative fronto-occipital diameter (FOD), biparietal diameter (BPD), temporal width (TW), and naso-frontal angle (NFA) were measured. Cranial index (CI) and the difference between preoperative and postoperative CI (ΔCI) were calculated. Preoperative cranio-cortical width (CCW) was measured to analyze the subarachnoid spaces' volumes. The children here considered were then divided into two groups: Group 1 with CCW within normal estimated value corrected for age and Group 2 with CCW larger than estimated normal value. Results: About 159 children were enrolled (72.3% male). CCW was larger than expected in 95 children (59.8%). A positive correlation between CCW and BPD (P ≤ 0.001) and a negative correlation between CCW and NFA (P ≤ 0.001) were found. When comparing the two groups, the mean age at preoperative computed tomography (CT) scan was 121 days in Group 1 and 110 days in Group 2. The mean age at operation was 130 days in Group 1 and 123 in Group 2. The mean age at postoperative examination (RX or CT scan) was 53.4 months in Group 1 and 51.8 months in Group 2. Preoperatively, the mean BPD, TW, and CI were significantly larger in Group 2 (P ≤ 0.01), whereas the NFA was significantly narrower (P = 0.03). Postoperative analysis showed that ΔCI was statistically different between the two groups (Group 1: 10%, Group 2: 7%; P < 0.04). The duration of follow-up period ranged between 19 and 129 months. Conclusion: Two main subtypes of forehead of infants with scaphocephaly may be distinguished. Indeed, the morphology of the forehead differs when a pathologic subarachnoid spaces' enlargement is present preoperatively and it also affects the postoperative evolution. Such observation highlights the importance of evaluating whether subarachnoid spaces are enlarged when planning a surgical correction in isolated sagittal suture synostosis.

10.
Sci Rep ; 8(1): 13613, 2018 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-30206245

RESUMO

We present an investigation on ultrashort laser surface structuring with structured light fields generated by various q-plates. In particular, q-plates with topological charges q = 1, 3/2, 2, 5/2 are used to generate femtosecond (fs) vector vortex beams, and form complex periodic surface structures through multi-pulse ablation of a solid crystalline silicon target. We show how optical retardation tuning of the q-plate offers a feasible way to vary the fluence transverse distribution of the beam, thus allowing the production of structures with peculiar shapes, which depend on the value of q. The features of the generated surface structures are compared with the vector vortex beam characteristics at the focal plane, by rationalizing their relationship with the local state of the laser light. Our experimental findings demonstrate how irradiation with fs complex light beams can offer a valuable route to design unconventional surface structures.

11.
Proc Natl Acad Sci U S A ; 115(38): 9485-9490, 2018 09 18.
Artigo em Inglês | MEDLINE | ID: mdl-30104360

RESUMO

Extended defects are known to have critical influences in achieving desired material performance. However, the nature of extended defect generation is highly elusive due to the presence of multiple nucleation mechanisms with close energetics. A strategy to design extended defects in a simple and clean way is thus highly desirable to advance the understanding of their role, improve material quality, and serve as a unique playground to discover new phenomena. In this work, we report an approach to create planar extended defects-antiphase boundaries (APB) -with well-defined origins via the combination of advanced growth, atomic-resolved electron microscopy, first-principals calculations, and defect theory. In La2/3Sr1/3MnO3 thin film grown on Sr2RuO4 substrate, APBs in the film naturally nucleate at the step on the substrate/film interface. For a single step, the generated APBs tend to be nearly perpendicular to the interface and propragate toward the film surface. Interestingly, when two steps are close to each other, two corresponding APBs communicate and merge together, forming a unique triangle-shaped defect domain boundary. Such behavior has been ascribed, in general, to the minimization of the surface energy of the APB. Atomic-resolved electron microscopy shows that these APBs have an intriguing antipolar structure phase, thus having the potential as a general recipe to achieve ferroelectric-like domain walls for high-density nonvolatile memory.

12.
ACS Omega ; 3(4): 3805-3812, 2018 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-30023881

RESUMO

A colorimetric immunosensor based on local surface plasmon resonance by gold nanoparticles is presented, and its application for the detection of human immunoglobulin G (IgG) is demonstrated. The color change of the colloidal solution is produced by nanoparticle aggregation, a process that can be tuned by the presence of the analyte once the nanoparticles are functionalized. In comparison to common functionalization techniques, the procedure described here is simpler, low-cost, and effective in binding antibodies upright on the gold surface. The dose-response curve is similar to that resulting in typical immunoassay platforms and is satisfactorily described by the proposed theoretical model. Human IgG at concentration levels of few hundreds of nanograms per milliliter can be detected by eyes within a few minutes, thereby making the colorimetric immunosensor proposed here a powerful tool in several areas, with urine test in medical diagnostics being the most immediate.

13.
Sci Rep ; 7(1): 3867, 2017 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-28634360

RESUMO

Metamagnetism occuring inside a ferromagnetic phase is peculiar. Therefore, Sr4Ru3O10, a T C = 105 K ferromagnet, has attracted much attention in recent years, because it develops a pronounced metamagnetic anomaly below T C for magnetic fields applied in the crystallographic ab-plane. The metamagnetic transition moves to higher fields for lower temperatures and splits into a double anomaly at critical fields H c1 = 2.3 T and H c2 = 2.8 T, respectively. Here, we report a detailed study of the different components of the magnetization vector as a function of temperature, applied magnetic field, and varying angle in Sr4Ru3O10. We discover for the first time a reduction of the magnetic moment in the plane of rotation at the metamagnetic transition. The anomaly shifts to higher fields by rotating the field from H ⊥ c to H || c. We compare our experimental findings with numerical simulations based on spin reorientation models taking into account magnetocrystalline anisotropy, Zeeman effect and antisymmetric exchange interactions. While Magnetocrystalline anisotropy combined with a Zeeman term are sufficient to explain a metamagnetic transition in Sr4Ru3O10, a Dzyaloshinskii-Moriya term is crucial to account for the reduction of the magnetic moment as observed in the experiments.

14.
Sci Rep ; 7: 42142, 2017 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-28169342

RESUMO

In the last few years femtosecond optical vortex beams with different spatial distributions of the state of polarization (e.g. azimuthal, radial, spiral, etc.) have been used to generate complex, regular surface patterns on different materials. Here we present an experimental investigation on direct femtosecond laser surface structuring based on a larger class of vector beams generated by means of a q-plate with topological charge q = +1/2. In fact, voltage tuning of q-plate optical retardation allows generating a family of ultrashort laser beams with a continuous spatial evolution of polarization and fluence distribution in the focal plane. These beams can be thought of as a controlled coherent superposition of a Gaussian beam with uniform polarization and a vortex beam with a radial or azimuthal state of polarization. The use of this family of ultrashort laser beams in surface structuring leads to a further extension of the achievable surface patterns. The comparison of theoretical predictions of the vector beam characteristics at the focal plane and the generated surface patterns is used to rationalize the dependence of the surface structures on the local state of the laser beam, thus offering an effective way to either design unconventional surface structures or diagnose complex ultrashort laser beams.

15.
Sci Rep ; 6: 31113, 2016 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-27502178

RESUMO

In this work, atomic force microscopy probes are functionalized by virtue of self-assembling monolayers of block copolymer (BCP) micelles loaded either with clusters of silver nanoparticles or bimetallic heterostructures consisting of mixed species of silver and gold nanoparticles. The resulting self-organized patterns allow coating the tips with a sort of nanometal skin made of geometrically confined nanoislands. This approach favors the reproducible engineering and tuning of the plasmonic properties of the resulting structured tip by varying the nanometal loading of the micelles. The newly conceived tips are applied for experiments of tip-enhanced Raman scattering (TERS) spectroscopy and scattering-type scanning near-field optical microscopy (s-SNOM). TERS and s-SNOM probe characterizations on several standard Raman analytes and patterned nanostructures demonstrate excellent enhancement factor with the possibility of fast scanning and spatial resolution <12 nm. In fact, each metal nanoisland consists of a multiscale heterostructure that favors large scattering and near-field amplification. Then, we verify the tips to allow challenging nongap-TER spectroscopy on thick biosamples. Our approach introduces a synergistic chemical functionalization of the tips for versatile inclusion and delivery of plasmonic nanoparticles at the tip apex, which may promote the tuning of the plasmonic properties, a large enhancement, and the possibility of adding new degrees of freedom for tip functionalization.

16.
Opt Express ; 24(4): 3238-47, 2016 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-26906987

RESUMO

Irradiation of crystalline silicon with femtosecond laser pulses produces a variety of quasi-periodic surface structures, among which sub-wavelength ripples creation is largely studied. Here we report an experimental investigation and a theoretical interpretation focusing on the seldom considered issue of quasi-periodic, micron spaced grooves formation. We characterize the morphological evolution of the grooves generation and experimentally single out the variation of the threshold fluence for their formation with the number of pulses N, while typical ripples simultaneously produced in the irradiated area are always considered for comparison. Our experimental findings evidence a power law dependence of the threshold fluence on the number of pulses both for ripples and grooves formation, typical of an incubation behavior. The incubation factor and single pulse threshold are (0.76 ± 0.04) and (0.20 ± 0.04) J/cm2 for ripples and (0.84 ± 0.03) and (0.54 ± 0.08) J/cm2 for grooves, respectively. Surface-scattered wave theory, which allows modeling irradiation with a single pulse on a rough surface, is exploited to interpret the observed structural modification of the surface textures. A simple, empirical scaling approach is proposed associating the surface structures generated in multiple-pulse experiments with the predictions of the surface-scattered wave theory, at laser fluencies around the grooves formation threshold. This, in turn, allows proposing a physical mechanism interpreting the grooves generation as well as the coexistence and relative prominence of grooves and ripples in the irradiated area.

17.
Artigo em Inglês | MEDLINE | ID: mdl-26651630

RESUMO

Disordered hyperuniform (DH) media have been recognized as a new state of disordered matter that broadens our vision of material engineering. Here, long-range correlated disordered two-dimensional patterns are fabricated by self-assembling of spherical diblock-copolymer (BCP) micelles. Control of the self-assembling parameters leads to the formation of DH patterns of micelles that can host nanoscale material inclusions, therefore providing an effective strategy for fabricating multimaterial DH structures at molecular scale. Centroidal patterns are accurately determined by virtue of BCP micelles loaded with metal nanoparticles. Our analysis reveals the signature of nearly ideal DH BCP assemblies in the local density fluctuation and a dominant linear scaling in the local number fluctuation.

18.
Sci Rep ; 5: 17929, 2015 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-26658307

RESUMO

Creation of patterns and structures on surfaces at the micro- and nano-scale is a field of growing interest. Direct femtosecond laser surface structuring with a Gaussian-like beam intensity profile has already distinguished itself as a versatile method to fabricate surface structures on metals and semiconductors. Here we present an approach for direct femtosecond laser surface structuring based on optical vortex beams with different spatial distributions of the state of polarization, which are easily generated by means of a q-plate. The different states of an optical vortex beam carrying an orbital angular momentum ℓ = ±1 are used to demonstrate the fabrication of various regular surface patterns on silicon. The spatial features of the regular rippled and grooved surface structures are correlated with the state of polarization of the optical vortex beam. Moreover, scattered surface wave theory approach is used to rationalize the dependence of the surface structures on the local state of the laser beam characteristics (polarization and fluence). The present approach can be further extended to fabricate even more complex and unconventional surface structures by exploiting the possibilities offered by femtosecond optical vector fields.

20.
Nanoscale Res Lett ; 8(1): 85, 2013 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-23414073

RESUMO

Initial stages of Cu immersion deposition in the presence of hydrofluoric acid on bulk and porous silicon were studied. Cu was found to deposit both on bulk and porous silicon as a layer of nanoparticles which grew according to the Volmer-Weber mechanism. It was revealed that at the initial stages of immersion deposition, Cu nanoparticles consisted of crystals with a maximum size of 10 nm and inherited the orientation of the original silicon substrate. Deposited Cu nanoparticles were found to be partially oxidized to Cu2O while CuO was not detected for all samples. In contrast to porous silicon, the crystal orientation of the original silicon substrate significantly affected the sizes, density, and oxidation level of Cu nanoparticles deposited on bulk silicon.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...