Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
FEBS J ; 285(3): 599-613, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29240297

RESUMO

The transient receptor potential channel of melastatin 4 (TRPM4) belongs to a group of large ion receptors that are involved in countless cell signalling cascades. This unique member is ubiquitously expressed in many human tissues, especially in cardiomyocytes, where it plays an important role in cardiovascular processes. Transient receptor potential channels (TRPs) are usually constituted by intracellular N- and C- termini, which serve as mediators affecting allosteric modulation of channels, resulting in the regulation of the channel function. The TRPs tails contain a number of conserved epitopes that specifically bind the intracellular modulators. Here, we identify new binding sites for the calmodulin (CaM) and S100 calcium-binding protein A1 (S100A1), located in the very distal part of the TRPM4 N terminus. We have used chemically synthesized peptides of the TRPM4, mimicking the binding epitopes, along with fluorescence methods to determine and specify CaM- and S100A1-binding sites. We have found that the ligands binding epitopes at the TRPM4 N terminus overlap, but the interacting mechanism of both complexes is probably different. The molecular models supported by data from the fluorescence method confirmed that the complexes formations are mediated by the positively charged (R139, R140, R144) and hydrophobic (L134, L138, V143) residues present at the TRPM4 N terminus-binding epitopes. The data suggest that the molecular complexes of TRPM4/CaM and TRPM4/S100A1 would lead to the modulation of the channel functions.


Assuntos
Calmodulina/metabolismo , Modelos Moleculares , Proteínas S100/metabolismo , Canais de Cátion TRPM/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação , Calmodulina/química , Calmodulina/genética , Biologia Computacional , Sequência Conservada , Bases de Dados de Proteínas , Epitopos , Sistemas Inteligentes , Polarização de Fluorescência , Humanos , Cinética , Ligantes , Simulação de Acoplamento Molecular , Mutação , Fragmentos de Peptídeos/síntese química , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas S100/química , Proteínas S100/genética , Canais de Cátion TRPM/química , Canais de Cátion TRPM/genética
2.
FEBS J ; 283(20): 3821-3838, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27588831

RESUMO

Apoptosis signal-regulating kinase 1 (ASK1, MAP3K5) activates p38 mitogen-activated protein kinase and the c-Jun N-terminal kinase in response to proinflammatory and stress signals. In nonstress conditions, ASK1 is inhibited by association with thioredoxin (TRX) which binds to the TRX-binding domain (ASK1-TBD) at the N terminus of ASK1. TRX dissociates in response to oxidative stress allowing the ASK1 activation. However, the molecular basis for the ASK1:TRX1 complex dissociation is still not fully understood. Here, the role of cysteine residues on the interaction between TRX1 and ASK1-TBD in both reducing and oxidizing conditions was investigated. We show that from the two catalytic cysteines of TRX1 the residue C32 is responsible for the high-affinity binding of TRX1 to ASK1-TBD in reducing conditions. The disulfide bond formation between C32 and C35 within the active site of TRX1 is the main factor responsible for the TRX1 dissociation upon its oxidation as the formation of the second disulfide bond between noncatalytic cysteines C62 and C69 did not have any additional effect. ASK1-TBD contains seven conserved cysteine residues which differ in solvent accessibility with the residue C250 being the only cysteine which is both solvent exposed and essential for TRX1 binding in reducing conditions. Furthermore, our data show that the catalytic site of TRX1 interacts with ASK1-TBD region containing cysteine C200 and that the oxidative stress induces intramolecular disulfide bond formation within ASK1-TBD and affects its structure in regions directly involved and/or important for TRX1 binding.


Assuntos
MAP Quinase Quinase Quinase 5/química , MAP Quinase Quinase Quinase 5/metabolismo , Tiorredoxinas/química , Tiorredoxinas/metabolismo , Substituição de Aminoácidos , Sítios de Ligação/genética , Cisteína/química , Humanos , Cinética , MAP Quinase Quinase Quinase 5/genética , Modelos Moleculares , Mutagênese Sítio-Dirigida , Oxirredução , Estresse Oxidativo , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Conformação Proteica , Domínios Proteicos , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Tiorredoxinas/genética
3.
J Biol Chem ; 291(39): 20753-65, 2016 09 23.
Artigo em Inglês | MEDLINE | ID: mdl-27514745

RESUMO

Apoptosis signal-regulating kinase 1 (ASK1, also known as MAP3K5), a member of the mitogen-activated protein kinase kinase kinase (MAP3K) family, regulates diverse physiological processes. The activity of ASK1 is triggered by various stress stimuli and is involved in the pathogenesis of cancer, neurodegeneration, inflammation, and diabetes. ASK1 forms a high molecular mass complex whose activity is, under non-stress conditions, suppressed through interaction with thioredoxin and the scaffolding protein 14-3-3. The 14-3-3 protein binds to the phosphorylated Ser-966 motif downstream of the ASK1 kinase domain. The role of 14-3-3 in the inhibition of ASK1 has yet to be elucidated. In this study we performed structural analysis of the complex between the ASK1 kinase domain phosphorylated at Ser-966 (pASK1-CD) and the 14-3-3ζ protein. Small angle x-ray scattering (SAXS) measurements and chemical cross-linking revealed that the pASK1-CD·14-3-3ζ complex is dynamic and conformationally heterogeneous. In addition, structural analysis coupled with the results of phosphorus NMR and time-resolved tryptophan fluorescence measurements suggest that 14-3-3ζ interacts with the kinase domain of ASK1 in close proximity to its active site, thus indicating this interaction might block its accessibility and/or affect its conformation.


Assuntos
Proteínas 14-3-3/química , MAP Quinase Quinase Quinase 5/antagonistas & inibidores , MAP Quinase Quinase Quinase 5/química , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Domínio Catalítico , Humanos , MAP Quinase Quinase Quinase 5/genética , MAP Quinase Quinase Quinase 5/metabolismo , Ressonância Magnética Nuclear Biomolecular , Fosforilação , Espalhamento a Baixo Ângulo , Difração de Raios X
4.
J Biol Chem ; 290(26): 16246-60, 2015 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-25971962

RESUMO

Phosducin (Pdc), a highly conserved phosphoprotein involved in the regulation of retinal phototransduction cascade, transcriptional control, and modulation of blood pressure, is controlled in a phosphorylation-dependent manner, including the binding to the 14-3-3 protein. However, the molecular mechanism of this regulation is largely unknown. Here, the solution structure of Pdc and its interaction with the 14-3-3 protein were investigated using small angle x-ray scattering, time-resolved fluorescence spectroscopy, and hydrogen-deuterium exchange coupled to mass spectrometry. The 14-3-3 protein dimer interacts with Pdc using surfaces both inside and outside its central channel. The N-terminal domain of Pdc, where both phosphorylation sites and the 14-3-3-binding motifs are located, is an intrinsically disordered protein that reduces its flexibility in several regions without undergoing dramatic disorder-to-order transition upon binding to 14-3-3. Our data also indicate that the C-terminal domain of Pdc interacts with the outside surface of the 14-3-3 dimer through the region involved in Gtßγ binding. In conclusion, we show that the 14-3-3 protein interacts with and sterically occludes both the N- and C-terminal Gtßγ binding interfaces of phosphorylated Pdc, thus providing a mechanistic explanation for the 14-3-3-dependent inhibition of Pdc function.


Assuntos
Proteínas 14-3-3/química , Proteínas 14-3-3/metabolismo , Proteínas do Olho/química , Proteínas do Olho/metabolismo , Reguladores de Proteínas de Ligação ao GTP/química , Reguladores de Proteínas de Ligação ao GTP/metabolismo , Fosfoproteínas/química , Fosfoproteínas/metabolismo , Proteínas 14-3-3/genética , Sequência de Aminoácidos , Animais , Sítios de Ligação , Proteínas do Olho/genética , Reguladores de Proteínas de Ligação ao GTP/genética , Humanos , Modelos Moleculares , Fosfoproteínas/genética , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Ratos
5.
FEBS J ; 282(3): 419-34, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25410771

RESUMO

We report the transmembrane voltage-induced lateral reorganization of highly-ordered lipid microdomains in the plasma membrane of living Saccharomyces cerevisiae. Using trans-parinaric acid (all-trans-9,11,13,15-octadecatetraenoic acid) as a probe of lipid order and different methods of membrane depolarization, we found that depolarization always invokes a significant reduction in the amount of gel-like microdomains in the membrane. Different depolarization mechanisms, including the application of ionophores, cell depolarization by an external electric field, depolarization by proton/hexose co-transport facilitated by HUP1 protein and a reduction of membrane potential caused by compromised respiration efficiency, yielded the same results independently of the yeast strain used. The data suggest that the voltage-induced reorganization of lateral membrane structure could play significant role in fast cellular response to acute stress conditions, as well as in other membrane microdomain-related regulatory mechanisms.


Assuntos
Membrana Celular/metabolismo , Microdomínios da Membrana/metabolismo , Saccharomyces cerevisiae/metabolismo , Potenciais da Membrana/fisiologia , Proteínas de Saccharomyces cerevisiae/metabolismo
6.
J Biol Chem ; 289(35): 24463-74, 2014 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-25037217

RESUMO

Apoptosis signal-regulating kinase 1 (ASK1), a mitogen-activated protein kinase kinase kinase, plays a key role in the pathogenesis of multiple diseases. Its activity is regulated by thioredoxin (TRX1) but the precise mechanism of this regulation is unclear due to the lack of structural data. Here, we performed biophysical and structural characterization of the TRX1-binding domain of ASK1 (ASK1-TBD) and its complex with reduced TRX1. ASK1-TBD is a monomeric and rigid domain that forms a stable complex with reduced TRX1 with 1:1 molar stoichiometry. The binding interaction does not involve the formation of intermolecular disulfide bonds. Residues from the catalytic WCGPC motif of TRX1 are essential for complex stability with Trp(31) being directly involved in the binding interaction as suggested by time-resolved fluorescence. Small-angle x-ray scattering data reveal a compact and slightly asymmetric shape of ASK1-TBD and suggest reduced TRX1 interacts with this domain through the large binding interface without inducing any dramatic conformational change.


Assuntos
MAP Quinase Quinase Quinase 5/metabolismo , Tiorredoxinas/metabolismo , Biofísica , Dicroísmo Circular , Oxirredução , Ligação Proteica , Conformação Proteica , Espectrometria de Fluorescência , Ultracentrifugação
7.
FEBS Lett ; 588(3): 443-9, 2014 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-24333335

RESUMO

We report sphingolipid-related reorganization of gel-like microdomains in the plasma membrane of living Saccharomyces cerevisiae using trans-Parinaric acid (t-PnA) and 1,6-diphenyl-1,3,5-hexatriene (DPH). Compared to control, the gel-like domains were significantly reduced in the membrane of a sphingolipid-deficient lcb1-100 mutant. The same reduction resulted from sphingolipid depletion by myriocin. The phenotype could be reverted when a myriocin-induced block in sphingolipid biosynthesis was bypassed by exogenous dihydrosphingosine. Lipid order of less-ordered membrane regions decreased with sphingolipid depletion as well, as documented by DPH fluorescence anisotropy. The data indicate that organization of lateral microdomains is an essential physiological role of these structural lipids.


Assuntos
Membrana Celular/metabolismo , Microdomínios da Membrana/metabolismo , Esfingolipídeos/biossíntese , Membrana Celular/química , Difenilexatrieno/química , Ácidos Graxos Insaturados/química , Polarização de Fluorescência , Microdomínios da Membrana/química , Mutação , Saccharomyces cerevisiae , Espectrometria de Fluorescência , Esfingolipídeos/química
8.
Biophys Chem ; 184: 68-78, 2013 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-24121535

RESUMO

The FOXO forkhead transcription factors are potent transcriptional activators involved in a wide range of key biological processes. In this work, the real-time kinetics of the interaction between the FOXO4-DNA binding domain (FOXO4-DBD) and the DNA was studied by using surface plasmon resonance (SPR). SPR analysis revealed that the interaction between FOXO4-DBD and the double stranded DNA containing either the insulin-responsive or the Daf-16 family member-binding element is preferably described by using a conformational change model which suggests a structural change of FOXO4-DBD upon binding to the DNA. This was further confirmed by using the time-resolved tryptophan fluorescence anisotropy decay measurements which revealed profound reduction of segmental dynamics of FOXO4-DBD upon the complex formation. Alanine scanning of amino acid residues engaged in polar contacts with the DNA showed that certain non-specific contacts with the DNA backbone are very important for both the binding affinity and the binding specificity of FOXO4-DBD.


Assuntos
DNA/química , Fatores de Transcrição/química , Sítios de Ligação , Proteínas de Ciclo Celular , Fatores de Transcrição Forkhead , Humanos , Cinética , Modelos Moleculares , Estrutura Terciária de Proteína , Ressonância de Plasmônio de Superfície
9.
Biophys J ; 103(9): 1960-9, 2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-23199924

RESUMO

Phosducin (Pdc), a highly conserved phosphoprotein, plays an important role in the regulation of G protein signaling, transcriptional control, and modulation of blood pressure. Pdc is negatively regulated by phosphorylation followed by binding to the 14-3-3 protein, whose role is still unclear. To gain insight into the role of 14-3-3 in the regulation of Pdc function, we studied structural changes of Pdc induced by phosphorylation and 14-3-3 protein binding using time-resolved fluorescence spectroscopy. Our data show that the phosphorylation of the N-terminal domain of Pdc at Ser-54 and Ser-73 affects the structure of the whole Pdc molecule. Complex formation with 14-3-3 reduces the flexibility of both the N- and C-terminal domains of phosphorylated Pdc, as determined by time-resolved tryptophan and dansyl fluorescence. Therefore, our data suggest that phosphorylated Pdc undergoes a conformational change when binding to 14-3-3. These changes involve the G(t)ßγ binding surface within the N-terminal domain of Pdc, and thus could explain the inhibitory effect of 14-3-3 on Pdc function.


Assuntos
Proteínas 14-3-3/metabolismo , Proteínas do Olho/química , Reguladores de Proteínas de Ligação ao GTP/química , Fosfoproteínas/química , Sequência de Aminoácidos , Animais , Proteínas do Olho/metabolismo , Reguladores de Proteínas de Ligação ao GTP/metabolismo , Humanos , Dados de Sequência Molecular , Fosfatidilcolinas , Fosfoproteínas/metabolismo , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Ratos , Serina/metabolismo , Espectrometria de Fluorescência , Triptofano
10.
J Biol Chem ; 286(50): 43527-36, 2011 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-22027839

RESUMO

Regulator of G protein signaling (RGS) proteins function as GTPase-activating proteins for the α-subunit of heterotrimeric G proteins. The function of certain RGS proteins is negatively regulated by 14-3-3 proteins, a family of highly conserved regulatory molecules expressed in all eukaryotes. In this study, we provide a structural mechanism for 14-3-3-dependent inhibition of RGS3-Gα interaction. We have used small angle x-ray scattering, hydrogen/deuterium exchange kinetics, and Förster resonance energy transfer measurements to determine the low-resolution solution structure of the 14-3-3ζ·RGS3 complex. The structure shows the RGS domain of RGS3 bound to the 14-3-3ζ dimer in an as-yet-unrecognized manner interacting with less conserved regions on the outer surface of the 14-3-3 dimer outside its central channel. Our results suggest that the 14-3-3 protein binding affects the structure of the Gα interaction portion of RGS3 as well as sterically blocks the interaction between the RGS domain and the Gα subunit of heterotrimeric G proteins.


Assuntos
Proteínas 14-3-3/química , Proteínas 14-3-3/metabolismo , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/metabolismo , Proteínas Ativadoras de GTPase/química , Proteínas Ativadoras de GTPase/metabolismo , Proteínas 14-3-3/genética , Dicroísmo Circular , Transferência Ressonante de Energia de Fluorescência , Proteínas de Ligação ao GTP/genética , Proteínas Ativadoras de GTPase/genética , Humanos , Espectrometria de Massas , Fosforilação , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas RGS , Espalhamento a Baixo Ângulo , Transdução de Sinais
11.
Proc Natl Acad Sci U S A ; 108(23): 9437-42, 2011 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-21596998

RESUMO

ESCRT-I is required for the sorting of integral membrane proteins to the lysosome, or vacuole in yeast, for cytokinesis in animal cells, and for the budding of HIV-1 from human macrophages and T lymphocytes. ESCRT-I is a heterotetramer of Vps23, Vps28, Vps37, and Mvb12. The crystal structures of the core complex and the ubiquitin E2 variant and Vps28 C-terminal domains have been determined, but internal flexibility has prevented crystallization of intact ESCRT-I. Here we have characterized the structure of ESCRT-I in solution by simultaneous structural refinement against small-angle X-ray scattering and double electron-electron resonance spectroscopy of spin-labeled complexes. An ensemble of at least six structures, comprising an equally populated mixture of closed and open conformations, was necessary to fit all of the data. This structural ensemble was cross-validated against single-molecule FRET spectroscopy, which suggested the presence of a continuum of open states. ESCRT-I in solution thus appears to consist of an approximately 50% population of one or a few related closed conformations, with the other 50% populating a continuum of open conformations. These conformations provide reference points for the structural pathway by which ESCRT-I induces membrane buds.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Complexos Endossomais de Distribuição Requeridos para Transporte/química , Transferência Ressonante de Energia de Fluorescência/métodos , Proteínas de Saccharomyces cerevisiae/química , Difração de Raios X/métodos , Algoritmos , Anisotropia , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , Endossomos/metabolismo , Humanos , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Espalhamento a Baixo Ângulo , Soluções
12.
J Fluoresc ; 21(3): 873-81, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-20066479

RESUMO

We tested a Maximum Entropy Method developed for oversampled data (SVD-MEM) on complex analytically simulated exponential decay data consisting of both noisy and noiseless multi-exponential fluorescence decay curves. We observed recovery of simulated parameters for three sets of data: a decay containing three exponential functions in both intensity and anisotropy curves, a set of intensity decays composed of 4, 5 and 6 exponential functions, and a decay characterized by a Gaussian lifetime distribution. The SVD-MEM fitting of the noiseless data returned the simulated parameters with the high accuracy. Noise added to the data affected recovery of the parameters in dependence on a data complexity. At selected realistic noise levels we obtained a good recovery of simulated parameters for all tested data sets. Decay parameters recovered from decays containing discrete lifetime components were almost independent of the value of the entropy scaling parameter γ used in the maximization procedure when it changed across the main peak of its posterior probability. A correct recovery of the Gaussian shaped lifetime distribution required selection of the γ-factor which was by several orders of magnitude larger than its most probable value to avoid a band splitting.

13.
Biochemistry ; 49(18): 3853-61, 2010 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-20384366

RESUMO

Yeast 14-3-3 protein isoforms BMH1 and BMH2 possess a distinctly variant C-terminal tail which differentiates them from the isoforms of higher eukaryotes. Their C-termini are longer and contain a polyglutamine stretch of unknown function. It is now well established that the C-terminal segment of 14-3-3 proteins plays an important regulatory role by functioning as an autoinhibitor which occupies the ligand binding groove and blocks the binding of inappropriate ligands. Whether the same holds true or not for the yeast isoforms is unclear. Therefore, we investigated the conformational behavior of the C-terminal segment of BMH proteins using various biophysical techniques. Dynamic light scattering, sedimentation velocity, time-resolved fluorescence anisotropy decay, and size exclusion chromatography measurements showed that the molecules of BMH proteins are significantly larger compared to the human 14-3-3zeta isoform. On the other hand, the sedimentation analysis confirmed that BMH proteins form dimers. Time-resolved tryptophan fluorescence experiments revealed no dramatic structural changes of the C-terminal segment upon the ligand binding. Taken together, the C-terminal segment of BMH proteins adopts a widely opened and extended conformation that makes difficult its folding into the ligand binding groove, thus increasing the apparent molecular size. It seems, therefore, that the C-terminal segment of BMH proteins does not function as an autoinhibitor.


Assuntos
Proteínas 14-3-3/química , Proteínas de Saccharomyces cerevisiae/química , Saccharomyces cerevisiae/química , Proteínas 14-3-3/genética , Proteínas 14-3-3/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Dimerização , Humanos , Dados de Sequência Molecular , Conformação Proteica , Estrutura Terciária de Proteína , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Alinhamento de Sequência
14.
J Struct Biol ; 170(3): 451-61, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20347994

RESUMO

Regulator of G protein signaling (RGS) proteins function as GTPase-activating proteins (GAPs) for the alpha-subunit of heterotrimeric G proteins. Several RGS proteins have been found to interact with 14-3-3 proteins. The 14-3-3 protein binding inhibits the GAP function of RGS proteins presumably by blocking their interaction with G(alpha) subunit. Since RGS proteins interact with G(alpha) subunits through their RGS domains, it is reasonable to assume that the 14-3-3 protein can either sterically occlude the G(alpha) interaction surface of RGS domain and/or change its structure. In this work, we investigated whether the 14-3-3 protein binding affects the structure of RGS3 using the time-resolved tryptophan fluorescence spectroscopy. Two single-tryptophan mutants of RGS3 were used to study conformational changes of RGS3 molecule. Our measurements revealed that the 14-3-3 protein binding induces structural changes in both the N-terminal part and the C-terminal RGS domain of phosphorylated RGS3 molecule. Experiments with the isolated RGS domain of RGS3 suggest that this domain alone can, to some extent, interact with the 14-3-3 protein in a phosphorylation-independent manner. In addition, a crystal structure of the RGS domain of RGS3 was solved at 2.3A resolution. The data obtained from the resolution of the structure of the RGS domain suggest that the 14-3-3 protein-induced conformational change affects the region within the G(alpha)-interacting portion of the RGS domain. This can explain the inhibitory effect of the 14-3-3 protein on GAP activity of RGS3.


Assuntos
Proteínas 14-3-3/química , Proteínas 14-3-3/metabolismo , Proteínas de Ligação ao GTP/química , Proteínas de Ligação ao GTP/metabolismo , Proteínas Ativadoras de GTPase/química , Proteínas Ativadoras de GTPase/metabolismo , Sequência de Aminoácidos , Substituição de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Transferência Ressonante de Energia de Fluorescência , Proteínas de Ligação ao GTP/genética , Proteínas Ativadoras de GTPase/genética , Humanos , Técnicas In Vitro , Modelos Moleculares , Complexos Multiproteicos , Mutagênese Sítio-Dirigida , Fosforilação , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Estrutura Terciária de Proteína , Subunidades Proteicas , Proteínas RGS , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Espectrometria de Fluorescência , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Triptofano/química
15.
J Membr Biol ; 233(1-3): 73-83, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-20135104

RESUMO

We characterized physical and chemical properties of cell-membrane fragments from Bacillus subtilis 168 (trpC2) grown at pH 5.0, 7.0 and 8.5. Effects of long-term bacterial adaptation reflected in growth rates and in changes of the membrane lipid composition were correlated with lipid order and dynamics using time-resolved fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene. We demonstrate that the pH adaptation results in a modification of a fatty acid content of cellular membranes that significantly influences both the lipid-chain order and dynamics. For cultivation at acidic conditions, the lipid order increases and membrane dynamics decreases compared to pH 7.0. This results in rigid and ordered membranes. Cultivation at pH 8.5 causes slight membrane disordering. Instant pH changes induce qualitatively similar but smaller effects. Proton flux measurements performed on intact cells adapted to both pH 5.0 and 8.5 revealed lower cell-membrane permeability compared to bacteria cultivated at pH optimum. Our results indicate that both acidic and alkalic pH stress represent a permanent challenge for B. subtilis to keep a functional membrane state. The documented adaptation-induced adjustments of membrane properties could be an important part of mechanisms maintaining an optimal intracellular pH at a wide range of extracellular proton concentrations.


Assuntos
Bacillus subtilis/fisiologia , Membrana Celular/fisiologia , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/metabolismo , Membrana Celular/metabolismo , Difenilexatrieno/metabolismo , Polarização de Fluorescência , Concentração de Íons de Hidrogênio
16.
J Mol Biol ; 396(5): 1197-210, 2010 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-20053354

RESUMO

Tryptophan fluorescence measurements were used to characterize the local dynamics of the highly conserved glycine-rich loop (GRL) of the mitochondrial processing peptidase (MPP) alpha-subunit in the presence of the substrate precursor. Reporter tryptophan residue was introduced into the GRL of the yeast alpha-MPP (Y299W) or at a proximal site (Y303W). Time-resolved and steady-state fluorescence spectroscopy demonstrated that for Trp299, the primary contact with the yeast malate dehydrogenase precursor evokes a change of the local GRL mobility. Moreover, time-resolved measurements showed that a functionless alpha-MPP with a single-residue deletion in the loop (Y303W/DeltaG292) is defective particularly in the primary contact with substrate. Thus, the GRL was proved to be part of a contact site of the enzyme specifically recognizing the substrate. Regarding the surface exposure and presence of the hydrophobic patches within the GRL, we proposed a functional analogy between the presequence recognition by the hydrophobic binding groove of the Tom20 mitochondrial import receptor and the GRL of the alpha-MPP. A molecular dynamics (MD) simulation of the MPP-substrate peptide complex model was employed to test this hypothesis. The initial positioning and conformation of the substrate peptide in the model fitting were chosen based on the analogy of its interaction with the Tom20 binding groove. MD simulation confirmed the stability of the proposed interaction and showed also a decrease in GRL flexibility in the presence of substrate, in agreement with fluorescence measurements. Moreover, conserved substrate hydrophobic residues in positions +1 and -4 to the cleavage site remain in close contact with the side chains of the GRL during the entire production part of MD simulation as stabilizing points of the hydrophobic interaction. We conclude that the GRL of the MPP alpha-subunit is the crucial evolutional outcome of the presequence recognition by MPP and represents a functional parallel with Tom20 import receptor.


Assuntos
Metaloendopeptidases/química , Metaloendopeptidases/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/química , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Substituição de Aminoácidos , Sequência de Bases , Domínio Catalítico/genética , DNA Fúngico/genética , Polarização de Fluorescência , Glicina/química , Interações Hidrofóbicas e Hidrofílicas , Metaloendopeptidases/genética , Proteínas de Transporte da Membrana Mitocondrial/genética , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Estrutura Quaternária de Proteína , Subunidades Proteicas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Deleção de Sequência , Espectrometria de Fluorescência , Especificidade por Substrato , Termodinâmica , Peptidase de Processamento Mitocondrial
17.
J Biol Chem ; 284(29): 19349-60, 2009 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-19416966

RESUMO

The role of 14-3-3 proteins in the regulation of FOXO forkhead transcription factors is at least 2-fold. First, the 14-3-3 binding inhibits the interaction between the FOXO and the target DNA. Second, the 14-3-3 proteins prevent nuclear reimport of FOXO factors by masking their nuclear localization signal. The exact mechanisms of these processes are still unclear, mainly due to the lack of structural data. In this work, we used fluorescence spectroscopy to investigate the mechanism of the 14-3-3 protein-dependent inhibition of FOXO4 DNA-binding properties. Time-resolved fluorescence measurements revealed that the 14-3-3 binding affects fluorescence properties of 5-(((acetylamino)ethyl)amino) naphthalene-1-sulfonic acid moiety attached at four sites within the forkhead domain of FOXO4 that represent important parts of the DNA binding interface. Observed changes in 5-(((acetylamino)ethyl)amino) naphthalene-1-sulfonic acid fluorescence strongly suggest physical contacts between the 14-3-3 protein and labeled parts of the FOXO4 DNA binding interface. The 14-3-3 protein binding, however, does not cause any dramatic conformational change of FOXO4 as documented by the results of tryptophan fluorescence experiments. To build a realistic model of the FOXO4.14-3-3 complex, we measured six distances between 14-3-3 and FOXO4 using Förster resonance energy transfer time-resolved fluorescence experiments. The model of the complex suggests that the forkhead domain of FOXO4 is docked within the central channel of the 14-3-3 protein dimer, consistent with our hypothesis that 14-3-3 masks the DNA binding interface of FOXO4.


Assuntos
Proteínas 14-3-3/metabolismo , DNA/metabolismo , Fatores de Transcrição/metabolismo , Proteínas 14-3-3/química , Proteínas 14-3-3/genética , Sítios de Ligação/genética , Proteínas de Ciclo Celular , DNA/química , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Eletroforese em Gel de Poliacrilamida , Polarização de Fluorescência , Fatores de Transcrição Forkhead , Humanos , Modelos Moleculares , Mutação , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Fatores de Transcrição/química , Fatores de Transcrição/genética
18.
Biochim Biophys Acta ; 1794(2): 270-4, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19049907

RESUMO

Myofibrillar creatine kinase (CK) buffers the cellular ATP concentration during fluctuating ATP turnover in a muscle. In order to detect structural changes of the CK molecule due to bound substrates, the dynamics of free, ATP-bound, and ATP+creatine-bound CK were examined, using steady-state and time-resolved fluorescence spectroscopy. The intrinsic tryptophan fluorescence of non-labelled CK presented the smaller fluorescence lifetime 2.38 ns and rotation correlation time 27 ns for the CK-ATP (in comparison with the times 2.72 ns and 35 ns for the free CK), and their moderate return to the longer times 2.42 ns and 29 ns for the CK-ATP+creatine complex. Three conformations for the non-labelled CK were indicated also by different quenching of fluorescence by acrylamide. Data were confirmed by anisotropy experiments with CK-(FITC labelled), providing the same substrate dependence of the rotation times (34 ns, 27 ns and returning 30 ns). The results indicate the existence of three conformations arranged according to the "energy minimizing principle" by ligated substrates. In this way the data implicate another essential component of physiological control at the subcellular level in the transition of the nonreactive CK-ATP+creatine complex to the reactive enzyme molecule.


Assuntos
Creatina Quinase/química , Modelos Moleculares , Fibras Musculares Esqueléticas/enzimologia , Difosfato de Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Animais , Anisotropia , Creatina Quinase/metabolismo , Fluoresceína-5-Isotiocianato , Corantes Fluorescentes , Estrutura Terciária de Proteína , Coelhos , Especificidade por Substrato
19.
Ann N Y Acad Sci ; 1130: 56-61, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18596332

RESUMO

We present a simple way to extend the time resolution of a standard frequency domain (FD) fluorometer by use of pulsed light-emitting diodes (LEDs) as an excitation source. High temporal resolution of the multifrequency FD method requires the excitation light to be modulated up to the highest possible frequencies with high modulation depth. We used harmonic content of subnanosecond-pulsed LEDs for generation of modulated excitation light. By a replacement of the light source, the upper frequency limit increased to 500-600 MHz, which is almost triple the frequency limit of the standard FD fluorometer equipped with an ordinary photomultiplier tube and an electro-optical modulator. Besides the increased time resolution, this approach allowed for elimination of a light modulator with an associated synthesizer and radio frequency power amplifier that are normally required for FD measurements with continuous wave light sources. Performance of the instrument with pulsed LED excitation is demonstrated on several examples of ultraviolet-excited fluorescence decays. We show that pulsed LEDs can serve as an inexpensive alternative to pulsed laser sources for FD fluorescence spectroscopy.


Assuntos
Fluorometria/instrumentação , Fluorometria/métodos , Luz , Acrilamida , Computadores , Desenho de Equipamento , Polarização de Fluorescência , Lasers , NAD/química , Espectrometria de Fluorescência/métodos , Espectrofotometria Ultravioleta/métodos , Fatores de Tempo , Triptofano/química
20.
Biochemistry ; 47(6): 1768-77, 2008 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-18181650

RESUMO

Tyrosine hydroxylase (TH) catalyzes the first step in the biosynthesis of catecholamines. Regulation of TH enzyme activity is controlled through the posttranslational modification of its regulatory domain. The regulatory domain of TH can be phosphorylated at four serines (8, 19, 31, and 40) by a variety of protein kinases. Phosphorylation of Ser19 does not by itself increase TH activity but induces its binding to the 14-3-3 protein. That leads to the enhancement of TH activity with a still not fully understood mechanism. The main goal of this work was to investigate whether the 14-3-3 protein binding affects the conformation of the regulatory domain of human TH isoform 1 (TH1R). Site-directed mutagenesis was used to generate five single-tryptophan mutants of TH1R with the Trp residue located at five different positions within the domain (positions 14, 34, 73, 103, and 131). Time-resolved tryptophan fluorescence measurements revealed that phosphorylation of Ser19 and Ser40 does not itself induce any significant structural changes in regions surrounding inserted tryptophans. On the other hand, the interaction between the 14-3-3 protein and phosphorylated TH1R decreases the solvent exposure of tryptophan residues at positions 14 and 34 and induces distinct structural change in the vicinity of Trp73. The 14-3-3 protein binding also reduces the sensitivity of phosphorylated TH1R to proteolysis by protecting its N-terminal part (first 33 residues). Circular dichroism measurements showed that TH1R is an unstructured protein with a low content of secondary structure and that neither phosphorylation nor the 14-3-3 protein binding changes its secondary structure.


Assuntos
Proteínas 14-3-3/fisiologia , Tirosina 3-Mono-Oxigenase/metabolismo , Sequência de Aminoácidos , Dicroísmo Circular , Eletroforese em Gel de Poliacrilamida , Humanos , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Fosforilação , Conformação Proteica , Espectrometria de Fluorescência , Tirosina 3-Mono-Oxigenase/química , Tirosina 3-Mono-Oxigenase/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...