Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 27
Filtrar
1.
J Med Chem ; 65(14): 10045-10078, 2022 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-35839126

RESUMO

The alarming rise of bacterial antibiotic resistance requires the development of new compounds. Such compounds, lipophosphonoxins (LPPOs), were previously reported to be active against numerous bacterial species, but serum albumins abolished their activity. Here we describe the synthesis and evaluation of novel antibacterial compounds termed LEGO-LPPOs, loosely based on LPPOs, consisting of a central linker module with two attached connector modules on either side. The connector modules are then decorated with polar and hydrophobic modules. We performed an extensive structure-activity relationship study by varying the length of the linker and hydrophobic modules. The best compounds were active against both Gram-negative and Gram-positive species including multiresistant strains and persisters. LEGO-LPPOs act by first depleting the membrane potential and then creating pores in the cytoplasmic membrane. Importantly, their efficacy is not affected by the presence of serum albumins. Low cytotoxicity and low propensity for resistance development demonstrate their potential for therapeutic use.


Assuntos
Antibacterianos , Bactérias Gram-Positivas , Albuminas , Antibacterianos/química , Membrana Celular , Bactérias Gram-Negativas , Testes de Sensibilidade Microbiana , Relação Estrutura-Atividade
2.
Medicina (Kaunas) ; 58(6)2022 May 26.
Artigo em Inglês | MEDLINE | ID: mdl-35743971

RESUMO

Background and Objectives: Given the limited knowledge of antibody responses to COVID-19 and their determinants, we analyzed the relationship between the occurrence of acute-phase symptoms and infection-induced immunoglobulin (Ig) G seropositivity up to 8 months post-symptom onset. Materials and Methods: In this cross-sectional study, 661 middle-aged unvaccinated healthcare workers (HCWs) were interviewed about the presence of symptoms during the acute phase of their previously confirmed COVID-19 and were tested for specific IgG, targeting the spike protein (S1 and S2). The dependence of seropositivity on the symptom occurrence was explored through multiple logistic regression, adjusted for the interval between symptom onset and serology testing, and through classification and regression trees. Results: A total of 551 (83.4%) HCWs showed seropositivity and, inversely, 110 (16.6%) HCWs were seronegative. The chance of IgG seropositivity was increased by dyspnea (odds ratio (OR) 1.48, p < 0.001) and anosmia (OR 1.52, p = 0.021). Fever in HCWs with dyspnea resulted in the highest detected seropositivity rate, and anosmia in HCWs without dyspnea significantly increased the proportion of seropositivity. Conclusion: Clinical manifestation of the acute phase of COVID-19 predisposes to the development of infection-induced antibody responses. The findings can be applied for assessing the long-term protection by IgG, and thus, for creating effective surveillance strategies.


Assuntos
COVID-19 , Anosmia , Anticorpos Antivirais , COVID-19/complicações , Estudos Transversais , Dispneia , Pessoal de Saúde , Humanos , Imunoglobulina G , Pessoa de Meia-Idade
3.
Sci Rep ; 12(1): 5222, 2022 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-35338239

RESUMO

The number of antibiotic-resistant bacterial strains is increasing due to the excessive and inappropriate use of antibiotics, which are therefore becoming ineffective. Here, we report an effective way of enhancing and restoring the antibacterial activity of inactive antibiotics by applying them together with a cyanographene/Ag nanohybrid, a nanomaterial that is applied for the first time for restoring the antibacterial activity of antibiotics. The cyanographene/Ag nanohybrid was synthesized by chemical reduction of a precursor material in which silver cations are coordinated on a cyanographene sheet. The antibacterial efficiency of the combined treatment was evaluated by determining fractional inhibitory concentrations (FIC) for antibiotics with different modes of action (gentamicin, ceftazidime, ciprofloxacin, and colistin) against the strains Escherichia coli, Pseudomonas aeruginosa, and Enterobacter kobei with different resistance mechanisms. Synergistic and partial synergistic effects against multiresistant strains were demonstrated for all of these antibiotics except ciprofloxacin, which exhibited an additive effect. The lowest average FICs equal to 0.29 and 0.39 were obtained for colistin against E. kobei and for gentamicin against E. coli, respectively. More importantly, we have experimentally confirmed for the first time, that interaction between the antibiotic's mode of action and the mechanism of bacterial resistance strongly influenced the combined treatment's efficacy.


Assuntos
Antibacterianos , Colistina , Antibacterianos/química , Antibacterianos/farmacologia , Ciprofloxacina/farmacologia , Colistina/farmacologia , Sinergismo Farmacológico , Escherichia coli , Gentamicinas/farmacologia , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa
4.
Vaccines (Basel) ; 10(2)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35214643

RESUMO

OBJECTIVES: Although the incidence of measles has decreased globally since the introduction of regular vaccination, its frequency has increased again in recent years. The study is focused on data from the Olomouc Region in the Czech Republic analyzed in four laboratories. The obtained results were compared with already published data. METHODS: The data were provided by individual laboratories in an anonymized form-age at the time of the examination, sex, and result of test. Samples were collected between June 2018 and September 2019 and evaluated on the scale positive-borderline-negative. RESULTS: A total of 7962 sera samples were evaluated using three different methods-two types of ELISA tests and CLIA. Positive result was issued in a total of 62.6 percent of samples, but the results of individual laboratories varied widely from 55.5 to 70.8 percent. However, the same trend with the highest levels of antibodies in people born before beginning of vaccination was observed. CONCLUSIONS: Data show significantly different results depending on the individual laboratories and the detection kits used. The underestimation of the proportion of positive results can cause problems in selecting individuals for revaccination with a live vaccine, which may fail in weakly positive individuals.

5.
Life (Basel) ; 12(1)2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35054522

RESUMO

(1) Background: The root canal system has complex anatomical and histological features that make it impossible to completely remove all bacteria by mechanical means only; they must be supplemented with disinfectant irrigation. Current disinfectants are unable to eliminate certain microorganisms that persist in the root canal, resulting in treatment failure. At the Institute of Organic Chemistry and Biochemistry, Prague, novel substances with the bactericidal effect, termed lipophosphonoxins (LPPOs), have been discovered. The aim of this pilot study was to investigate the ex vivo effects of second- and third-generation LPPOs on Enterococcus faecalis and compare them with 5% sodium hypochlorite (NaOCl), 0.12% chlorhexidine digluconate, and 17% ethylenediaminetetraacetic acid (EDTA). (2) Methods: The root canal's dentin was used as a carrier for biofilm formation in the extracted human mature mandibular premolars. The samples were filled with cultivation broth and 0.25% glucose with tested solutions. In control samples, only fresh cultivation broth (negative control) and cultivation broth with bacterial suspension (growth control) were used. Each sample was inoculated with E. faecalis CCM4224 except for the negative control, and cultivation was performed. To determine the number of planktonic cells, the sample content was inoculated on blood agar. To evaluate biofilm formation inhibition, samples were placed in tubes with BHI. (3) Results: LPPOs exhibited a reduction in biofilm growth and bacteria comparable to NaOCl, and they were superior to other tested disinfectants. (4) Conclusions: The study results suggest the effect of lipophosphonoxins on E. faecalis CCM 4224 reduces planktonic bacterial cells and inhibits formation of biofilm in root canal samples.

6.
Adv Sci (Weinh) ; 8(12): 2003090, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-34194925

RESUMO

The ability of bacteria to develop resistance to antibiotics is threatening one of the pillars of modern medicine. It was recently understood that bacteria can develop resistance even to silver nanoparticles by starting to produce flagellin, a protein which induces their aggregation and deactivation. This study shows that silver covalently bound to cyanographene (GCN/Ag) kills silver-nanoparticle-resistant bacteria at concentrations 30 times lower than silver nanoparticles, a challenge which has been so far unmet. Tested also against multidrug resistant strains, the antibacterial activity of GCN/Ag is systematically found as potent as that of free ionic silver or 10 nm colloidal silver nanoparticles. Owing to the strong and multiple dative bonds between the nitrile groups of cyanographene and silver, as theory and experiments confirm, there is marginal silver ion leaching, even after six months of storage, and thus very high cytocompatibility to human cells. Molecular dynamics simulations suggest strong interaction of GCN/Ag with the bacterial membrane, and as corroborated by experiments, the antibacterial activity does not rely on the release of silver nanoparticles or ions. Endowed with these properties, GCN/Ag shows that rigid supports selectively and densely functionalized with potent silver-binding ligands, such as cyanographene, may open new avenues against microbial resistance.


Assuntos
Antibacterianos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Farmacorresistência Bacteriana/efeitos dos fármacos , Nanopartículas Metálicas/uso terapêutico , Prata/uso terapêutico , Nanopartículas Metálicas/química , Prata/química
7.
Sci Rep ; 11(1): 10446, 2021 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-34001940

RESUMO

Lipophosphonoxins (LPPOs) are small modular synthetic antibacterial compounds that target the cytoplasmic membrane. First-generation LPPOs (LPPO I) exhibit an antimicrobial activity against Gram-positive bacteria; however they do not exhibit any activity against Gram-negatives. Second-generation LPPOs (LPPO II) also exhibit broadened activity against Gram-negatives. We investigated the reasons behind this different susceptibility of bacteria to the two generations of LPPOs using model membranes and the living model bacteria Bacillus subtilis and Escherichia coli. We show that both generations of LPPOs form oligomeric conductive pores and permeabilize the bacterial membrane of sensitive cells. LPPO activity is not affected by the value of the target membrane potential, and thus they are also active against persister cells. The insensitivity of Gram-negative bacteria to LPPO I is probably caused by the barrier function of the outer membrane with LPS. LPPO I is almost incapable of overcoming the outer membrane in living cells, and the presence of LPS in liposomes substantially reduces their activity. Further, the antimicrobial activity of LPPO is also influenced by the phospholipid composition of the target membrane. A higher proportion of phospholipids with neutral charge such as phosphatidylethanolamine or phosphatidylcholine reduces the LPPO permeabilizing potential.


Assuntos
Antibacterianos/farmacologia , Peptídeos Catiônicos Antimicrobianos/farmacologia , Bacillus subtilis/efeitos dos fármacos , Membrana Externa Bacteriana/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Antibacterianos/síntese química , Peptídeos Catiônicos Antimicrobianos/síntese química , Bacillus subtilis/química , Bacillus subtilis/citologia , Membrana Externa Bacteriana/química , Membrana Externa Bacteriana/metabolismo , Permeabilidade da Membrana Celular , Escherichia coli/química , Escherichia coli/citologia , Bicamadas Lipídicas , Potenciais da Membrana/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Fosfatidilcolinas/análise , Fosfatidilcolinas/metabolismo , Fosfatidiletanolaminas/análise , Fosfatidiletanolaminas/metabolismo
8.
Sci Rep ; 11(1): 6786, 2021 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-33762617

RESUMO

Photodynamic inactivation (PDI) is a promising approach for the efficient killing of pathogenic microbes. In this study, the photodynamic effect of sulfonated polystyrene nanoparticles with encapsulated hydrophobic 5,10,15,20-tetraphenylporphyrin (TPP-NP) photosensitizers on Gram-positive (including multi-resistant) and Gram-negative bacterial strains was investigated. The cell viability was determined by the colony forming unit method. The results showed no dark cytotoxicity but high phototoxicity within the tested conditions. Gram-positive bacteria were more sensitive to TPP-NPs than Gram-negative bacteria. Atomic force microscopy was used to detect changes in the morphological properties of bacteria before and after the PDI treatment.


Assuntos
Bactérias/efeitos dos fármacos , Bactérias/efeitos da radiação , Composição de Medicamentos , Nanopartículas , Processos Fotoquímicos , Poliestirenos , Porfirinas/administração & dosagem , Porfirinas/química , Microscopia de Força Atômica , Nanopartículas/química , Fotoquimioterapia/métodos , Poliestirenos/química
9.
Colloids Surf B Biointerfaces ; 202: 111680, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33714189

RESUMO

The use of Ag-modified nanomaterials continues to attract attention in biological contamination control, their potential cytotoxicity is often overlooked. Herein, biocompatible carbon nitride is modified with 1 and 5 wt.% Ag and effects of different nanomaterial dose and Ag content on antimicrobial activity and cytotoxicity is studied. Pure Ag nanoparticles and AgNO3 is tested for comparison, together with ten bacterial strains including pan-resistant Pseudomonas aeruginosa. Cytotoxicity is then investigated in three adherent and two suspension human cell lines, and results confirm that cancer adherent cell lines are the most immune lines and human cervical adenocarcinoma cells (HeLa) are more resilient than human lung adenocarcinoma cells (A549). The HeLa remains over 90 % viable even after 24 -h treatment with the highest concentration of 5%Ag/g-C3N4 (300 mg L-1) while A549 sustained viability only up to 100 mg L-1. Higher concentrations then induce cytotoxicity and A549 cell viability decreases. Our results show the importance of complementary testing of cytotoxicity by LIVE/DEAD assay using flow cytometry with more different human cell lines, which might be less immune to tested nanomaterials than HeLa and A549. Combined controls of new antibacterial agent activity tests then provide increased knowledge of their biocompatibility.


Assuntos
Nanopartículas Metálicas , Prata , Antibacterianos/farmacologia , Humanos , Nitrilas
10.
Sci Rep ; 11(1): 6240, 2021 03 18.
Artigo em Inglês | MEDLINE | ID: mdl-33737512

RESUMO

Targeted and effective therapy of diseases demands utilization of rapid methods of identification of the given markers. Surface enhanced Raman spectroscopy (SERS) in conjunction with streptavidin-biotin complex is a promising alternative to culture or PCR based methods used for such purposes. Many biotinylated antibodies are available on the market and so this system offers a powerful tool for many analytical applications. Here, we present a very fast and easy-to-use procedure for preparation of streptavidin coated magnetic polystyrene-Au (or Ag) nanocomposite particles as efficient substrate for surface SERS purposes. As a precursor for the preparation of SERS active and magnetically separable composite, commercially available streptavidin coated polystyrene (PS) microparticles with a magnetic core were utilized. These composites of PS particles with silver or gold nanoparticles were prepared by reducing Au(III) or Ag(I) ions using ascorbic acid or dopamine. The choice of the reducing agent influences the morphology and the size of the prepared Ag or Au particles (15-100 nm). The prepare composites were also characterized by HR-TEM images, mapping of elements and also magnetization measurements. The content of Au and Ag was determined by AAS analysis. The synthesized composites have a significantly lower density against magnetic composites based on iron oxides, which considerably decreases the tendency to sedimentation. The polystyrene shell on a magnetic iron oxide core also pronouncedly reduces the inclination to particle aggregation. Moreover, the preparation and purification of this SERS substrate takes only a few minutes. The PS composite with thorny Au particles with the size of approximately 100 nm prepared was utilized for specific and selective detection of Staphylococcus aureus infection in joint knee fluid (PJI) and tau protein (marker for Alzheimer disease).


Assuntos
Doença de Alzheimer/diagnóstico , Ouro/química , Nanopartículas Magnéticas de Óxido de Ferro/química , Prata/química , Análise Espectral Raman/métodos , Infecções Estafilocócicas/diagnóstico , Proteínas tau/análise , Doença de Alzheimer/sangue , Doença de Alzheimer/genética , Ácido Ascórbico/química , Biomarcadores/análise , Dopamina/química , Humanos , Nanopartículas Magnéticas de Óxido de Ferro/ultraestrutura , Tamanho da Partícula , Poliestirenos/química , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/crescimento & desenvolvimento , Staphylococcus aureus/patogenicidade , Estreptavidina/química , Líquido Sinovial/microbiologia , Proteínas tau/sangue , Proteínas tau/genética
11.
ACS Omega ; 5(7): 3165-3171, 2020 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-32118132

RESUMO

Successful surgeries involving orthopedic implants depend on the avoidance of biofilm development on the implant surface during the early postoperative period. Here, we investigate the potential of novel antibacterial compounds-second-generation lipophosphonoxins (LPPOs II)-as additives to surgical bone cements. We demonstrate (i) excellent thermostability of LPPOs II, which is essential to withstand elevated temperatures during exothermic cement polymerization; (ii) unchanged tensile strength and elongation at the break properties of the composite cements containing LPPOs II compared to cements without additives; (iii) convenient elution kinetics on the order of days; and (iv) the strong antibiofilm activity of the LPPO II-loaded cements even against bacteria resistant to the medicinally utilized antibiotic, gentamicin. Thus, LPPOs II display promising potential as antimicrobial additives to surgical bone cements.

12.
Cells ; 8(12)2019 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-31775352

RESUMO

Contamination of cell cultures by mycoplasmas is a very common phenomenon. As they can substantially alter cell metabolism and potentially spread to all cell cultures in laboratory, their early detection is necessary. One of the fastest and cheapest methods of mycoplasma detection relies on the direct staining of mycoplasmas' DNA by DAPI or Hoechst dyes. Although this method is easy and fast to perform, it suffers from the low signal provided by these dyes compared to the nuclear DNA. Therefore, the reporter cell lines are used for cultivation of mycoplasmas before DAPI or the Hoechst staining step. In the study presented, we have developed and tested a new immunofluorescence assay for the detection of mycoplasmas. The method is based on the enzymatic labeling using DNA polymerase I and modified nucleotides utilizing nicks in the mycoplasmas' DNA. Modified nucleotides are incorporated into mycoplasmas' DNA and subsequently visualized by immunofluorescence microscopy. The developed approach is independent of the mycoplasma strain, does not intensely stain nuclear DNA, does not stain other bacteria, and provides higher sensitivity than the approach based on the direct labeling using DAPI or Hoechst dyes.


Assuntos
Microscopia de Fluorescência/métodos , Infecções por Mycoplasma/microbiologia , Mycoplasma fermentans/isolamento & purificação , Mycoplasma hominis/isolamento & purificação , Mycoplasma/isolamento & purificação , Células A549 , DNA Polimerase I/química , Humanos , Coloração e Rotulagem
13.
Nat Nanotechnol ; 13(1): 65-71, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29203912

RESUMO

Silver nanoparticles have already been successfully applied in various biomedical and antimicrobial technologies and products used in everyday life. Although bacterial resistance to antibiotics has been extensively discussed in the literature, the possible development of resistance to silver nanoparticles has not been fully explored. We report that the Gram-negative bacteria Escherichia coli 013, Pseudomonas aeruginosa CCM 3955 and E. coli CCM 3954 can develop resistance to silver nanoparticles after repeated exposure. The resistance stems from the production of the adhesive flagellum protein flagellin, which triggers the aggregation of the nanoparticles. This resistance evolves without any genetic changes; only phenotypic change is needed to reduce the nanoparticles' colloidal stability and thus eliminate their antibacterial activity. The resistance mechanism cannot be overcome by additional stabilization of silver nanoparticles using surfactants or polymers. It is, however, strongly suppressed by inhibiting flagellin production with pomegranate rind extract.


Assuntos
Antibacterianos , Farmacorresistência Bacteriana , Escherichia coli/efeitos dos fármacos , Nanopartículas Metálicas/química , Pseudomonas aeruginosa/efeitos dos fármacos , Prata , Antibacterianos/química , Antibacterianos/farmacologia , Estabilidade de Medicamentos , Testes de Sensibilidade Microbiana , Prata/química , Prata/farmacologia
14.
J Med Chem ; 60(14): 6098-6118, 2017 07 27.
Artigo em Inglês | MEDLINE | ID: mdl-28654257

RESUMO

The increase in the number of bacterial strains resistant to known antibiotics is alarming. In this study we report the synthesis of novel compounds termed Lipophosphonoxins II (LPPO II). We show that LPPO II display excellent activities against Gram-positive and -negative bacteria, including pathogens and multiresistant strains. We describe their mechanism of action-plasmatic membrane pore-forming activity selective for bacteria. Importantly, LPPO II neither damage nor cross the eukaryotic plasmatic membrane at their bactericidal concentrations. Further, we demonstrate LPPO II have low propensity for resistance development, likely due to their rapid membrane-targeting mode of action. Finally, we reveal that LPPO II are not toxic to either eukaryotic cells or model animals when administered orally or topically. Collectively, these results suggest that LPPO II are highly promising compounds for development into pharmaceuticals.


Assuntos
Antibacterianos/química , Uridina Monofosfato/análogos & derivados , Animais , Antibacterianos/síntese química , Antibacterianos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Desenho de Fármacos , Farmacorresistência Bacteriana Múltipla , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Bicamadas Lipídicas/química , Masculino , Camundongos Endogâmicos ICR , Testes de Sensibilidade Microbiana , Fosfolipídeos/química , Pirazóis/síntese química , Pirazóis/química , Pirazóis/farmacologia , Coelhos , Testes de Irritação da Pele , Estereoisomerismo , Relação Estrutura-Atividade , Uridina Monofosfato/síntese química , Uridina Monofosfato/química , Uridina Monofosfato/farmacologia
15.
Klin Mikrobiol Infekc Lek ; 23(1): 17-20, 2017 Mar.
Artigo em Tcheco | MEDLINE | ID: mdl-28467592

RESUMO

OBJECTIVE: The aim was to evaluate the antibacterial effect of silver nanoparticles on anaerobic bacteria. MATERIAL AND METHODS: The microdilution method was used to determine the minimum inhibitory concentrations (MICs) of 28 nm silver nanoparticles, both unstabilized and stabilized by casein, gelatin and polyacrylic acid. The following anaerobic bacteria were tested: Bacteroides fragilis, Bacteroides thetaiotaomicron, Eggerthella lenta, Propionibacterium acnes, Clostridium perfringens, Clostridium difficile and Fusobacterium varium. RESULTS: Unstabilized silver nanoparticles exhibited antibacterial activity at concentrations ranging from 13 to 34 mg/L. A more significant effect with MIC values between 1 and 13 mg/L was shown for silver nanoparticles stabilized by casein. CONCLUSION: Unstabilized silver nanoparticles are active against anaerobic bacteria at concentrations proved to be cytotoxic to eukaryotic cells of human fibroblasts and multicellular organisms. Silver nanoparticles stabilized by casein appear to be more suitable for further research.


Assuntos
Antibacterianos/farmacologia , Bactérias Anaeróbias/efeitos dos fármacos , Nanopartículas Metálicas , Prata/farmacologia , Humanos
16.
Colloids Surf B Biointerfaces ; 142: 392-399, 2016 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26970828

RESUMO

Bacterial resistance to conventional antibiotics is currently one of the most important healthcare issues, and has serious negative impacts on medical practice. This study presents a potential solution to this problem, using the strong synergistic effects of antibiotics combined with silver nanoparticles (NPs). Silver NPs inhibit bacterial growth via a multilevel mode of antibacterial action at concentrations ranging from a few ppm to tens of ppm. Silver NPs strongly enhanced antibacterial activity against multiresistant, ß-lactamase and carbapenemase-producing Enterobacteriaceae when combined with the following antibiotics: cefotaxime, ceftazidime, meropenem, ciprofloxacin and gentamicin. All the antibiotics, when combined with silver NPs, showed enhanced antibacterial activity at concentrations far below the minimum inhibitory concentrations (tenths to hundredths of one ppm) of individual antibiotics and silver NPs. The enhanced activity of antibiotics combined with silver NPs, especially meropenem, was weaker against non-resistant bacteria than against resistant bacteria. The double disk synergy test showed that bacteria produced no ß-lactamase when treated with antibiotics combined with silver NPs. Low silver concentrations were required for effective enhancement of antibacterial activity against multiresistant bacteria. These low silver concentrations showed no cytotoxic effect towards mammalian cells, an important feature for potential medical applications.


Assuntos
Antibacterianos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Klebsiella pneumoniae/efeitos dos fármacos , Nanopartículas Metálicas/toxicidade , Prata/farmacologia , Cefotaxima/farmacologia , Ceftazidima/farmacologia , Ciprofloxacina/farmacologia , Farmacorresistência Bacteriana Múltipla/genética , Sinergismo Farmacológico , Escherichia coli/enzimologia , Escherichia coli/genética , Escherichia coli/crescimento & desenvolvimento , Expressão Gênica , Gentamicinas/farmacologia , Klebsiella pneumoniae/enzimologia , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/crescimento & desenvolvimento , Meropeném , Nanopartículas Metálicas/química , Testes de Sensibilidade Microbiana , Tienamicinas/farmacologia , beta-Lactamases/genética , beta-Lactamases/metabolismo
17.
PLoS One ; 10(12): e0145918, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26716439

RESUMO

The advantages offered by established antibiotics in the treatment of infectious diseases are endangered due to the increase in the number of antibiotic-resistant bacterial strains. This leads to a need for new antibacterial compounds. Recently, we discovered a series of compounds termed lipophosphonoxins (LPPOs) that exhibit selective cytotoxicity towards Gram-positive bacteria that include pathogens and resistant strains. For further development of these compounds, it was necessary to identify the mechanism of their action and characterize their interaction with eukaryotic cells/organisms in more detail. Here, we show that at their bactericidal concentrations LPPOs localize to the plasmatic membrane in bacteria but not in eukaryotes. In an in vitro system we demonstrate that LPPOs create pores in the membrane. This provides an explanation of their action in vivo where they cause serious damage of the cellular membrane, efflux of the cytosol, and cell disintegration. Further, we show that (i) LPPOs are not genotoxic as determined by the Ames test, (ii) do not cross a monolayer of Caco-2 cells, suggesting they are unable of transepithelial transport, (iii) are well tolerated by living mice when administered orally but not peritoneally, and (iv) are stable at low pH, indicating they could survive the acidic environment in the stomach. Finally, using one of the most potent LPPOs, we attempted and failed to select resistant strains against this compound while we were able to readily select resistant strains against a known antibiotic, rifampicin. In summary, LPPOs represent a new class of compounds with a potential for development as antibacterial agents for topical applications and perhaps also for treatment of gastrointestinal infections.


Assuntos
Antibacterianos/farmacologia , Nucleosídeos de Pirimidina/farmacologia , Animais , Antibacterianos/química , Antibacterianos/farmacocinética , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/crescimento & desenvolvimento , Bacillus subtilis/metabolismo , Transporte Biológico Ativo , Células CACO-2 , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Permeabilidade da Membrana Celular/efeitos dos fármacos , Descoberta de Drogas , Estabilidade de Medicamentos , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecalis/crescimento & desenvolvimento , Feminino , Bactérias Gram-Positivas/efeitos dos fármacos , Bactérias Gram-Positivas/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos ICR , Testes de Sensibilidade Microbiana , Microscopia Eletrônica de Transmissão , Estrutura Molecular , Ligação Proteica , Nucleosídeos de Pirimidina/química , Nucleosídeos de Pirimidina/farmacocinética , Streptococcus agalactiae/efeitos dos fármacos , Streptococcus agalactiae/crescimento & desenvolvimento
18.
PLoS One ; 10(3): e0119202, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25781988

RESUMO

The diverse mechanism of antimicrobial activity of Ag and AgBr nanoparticles against gram-positive and gram-negative bacteria and also against several strains of candida was explored in this study. The AgBr nanoparticles (NPs) were prepared by simple precipitation of silver nitrate by potassium bromide in the presence of stabilizing polymers. The used polymers (PEG, PVP, PVA, and HEC) influence significantly the size of the prepared AgBr NPs dependently on the mode of interaction of polymer with Ag+ ions. Small NPs (diameter of about 60-70 nm) were formed in the presence of the polymer with low interaction as are PEG and HEC, the polymers which interact with Ag+ strongly produce nearly two times bigger NPs (120-130 nm). The prepared AgBr NPs were transformed to Ag NPs by the reduction using NaBH4. The sizes of the produced Ag NPs followed the same trends--the smallest NPs were produced in the presence of PEG and HEC polymers. Prepared AgBr and Ag NPs dispersions were tested for their biological activity. The obtained results of antimicrobial activity of AgBr and Ag NPs are discussed in terms of possible mechanism of the action of these NPs against tested microbial strains. The AgBr NPs are more effective against gram-negative bacteria and tested yeast strains while Ag NPs show the best antibacterial action against gram-positive bacteria strains.


Assuntos
Anti-Infecciosos/farmacologia , Brometos/farmacologia , Nanopartículas Metálicas/química , Compostos de Prata/farmacologia , Prata/farmacologia , Anti-Infecciosos/síntese química , Anti-Infecciosos/química , Bactérias/efeitos dos fármacos , Brometos/química , Candida/efeitos dos fármacos , Polímeros/química , Prata/química , Compostos de Prata/química
19.
Molecules ; 21(1): E26, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26729075

RESUMO

The resistance of bacteria towards traditional antibiotics currently constitutes one of the most important health care issues with serious negative impacts in practice. Overcoming this issue can be achieved by using antibacterial agents with multimode antibacterial action. Silver nano-particles (AgNPs) are one of the well-known antibacterial substances showing such multimode antibacterial action. Therefore, AgNPs are suitable candidates for use in combinations with traditional antibiotics in order to improve their antibacterial action. In this work, a systematic study quantifying the synergistic effects of antibiotics with different modes of action and different chemical structures in combination with AgNPs against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus was performed. Employing the microdilution method as more suitable and reliable than the disc diffusion method, strong synergistic effects were shown for all tested antibiotics combined with AgNPs at very low concentrations of both antibiotics and AgNPs. No trends were observed for synergistic effects of antibiotics with different modes of action and different chemical structures in combination with AgNPs, indicating non-specific synergistic effects. Moreover, a very low amount of silver is needed for effective antibacterial action of the antibiotics, which represents an important finding for potential medical applications due to the negligible cytotoxic effect of AgNPs towards human cells at these concentration levels.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Nanopartículas Metálicas/química , Prata/química , Animais , Sobrevivência Celular/efeitos dos fármacos , Farmacorresistência Bacteriana/efeitos dos fármacos , Sinergismo Farmacológico , Escherichia coli/efeitos dos fármacos , Camundongos , Testes de Sensibilidade Microbiana , Estrutura Molecular , Células NIH 3T3 , Pseudomonas aeruginosa/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos
20.
PLoS One ; 9(8): e103675, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25098570

RESUMO

The potential for application of any nanoparticles, including silver nanoparticles (AgNPs), is strongly dependent on their stability against aggregation. Therefore, improvement of this parameter is a key task, especially in the case of AgNPs, because a correlation between size and biological activity has been demonstrated. In the present work, a natural stabilizer, gelatin, was investigated for the stabilization of AgNPs in an aqueous dispersion. The particles were prepared via a modified Tollens process, and the gelatin modifier was added prior to the reducing agent. The stability against aggregation of the AgNPs prepared by this method was more than one order of magnitude higher (on the basis of the critical coagulation concentration (CCC)) than that of AgNPs prepared via a similar method but without the assistance of gelatin. Their high stability against aggregation was confirmed over wide pH range (from 2 to 13) in which the particles did not exhibit rapid aggregation; such stability has not been previously reported for AgNPs. Additionally, gelatin not only fulfills the role of a unique stabilizer but also positively influences the modified Tollens process used to prepare the AgNPs. The diameter of the gelatin-modified AgNPs was substantially smaller in comparison to those prepared without gelatin. The polydispersity of the dispersion significantly narrowed. Moreover, the gelatin-stabilized AgNPs exhibited long-term stability against aggregation and maintained high antibacterial activity when stored for several months under ambient conditions.


Assuntos
Antibacterianos , Bactérias/crescimento & desenvolvimento , Gelatina , Nanopartículas Metálicas/química , Prata , Antibacterianos/química , Antibacterianos/farmacologia , Estabilidade de Medicamentos , Gelatina/química , Gelatina/farmacologia , Concentração de Íons de Hidrogênio , Prata/química , Prata/farmacologia , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...