Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 234(1): 93-106, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35043407

RESUMO

Plastid-to-nucleus retrograde signalling (RS) initiated by dysfunctional chloroplasts impact photomorphogenic development. We have previously shown that the transcription factor GLK1 acts downstream of the RS regulator GUN1 in photodamaging conditions to regulate not only the well established expression of photosynthesis-associated nuclear genes (PhANGs) but also to regulate seedling morphogenesis. Specifically, the GUN1/GLK1 module inhibits the light-induced phytochrome-interacting factor (PIF)-repressed transcriptional network to suppress cotyledon development when chloroplast integrity is compromised, modulating the area exposed to potentially damaging high light. However, how the GUN1/GLK1 module inhibits photomorphogenesis upon chloroplast damage remained undefined. Here, we report the identification of BBX16 as a novel direct target of GLK1. BBX16 is induced and promotes photomorphogenesis in moderate light and is repressed via GUN1/GLK1 after chloroplast damage. Additionally, we showed that BBX16 represents a regulatory branching point downstream of GUN1/GLK1 in the regulation of PhANG expression and seedling development upon RS activation. The gun1 phenotype in lincomycin and the gun1-like phenotype of GLK1OX are markedly suppressed in gun1bbx16 and GLK1OXbbx16. This study identified BBX16 as the first member of the BBX family involved in RS, and defines a molecular bifurcation mechanism operated by GLK1/BBX16 to optimise seedling de-etiolation, and to ensure photoprotection in unfavourable light conditions.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Luz , Plântula
2.
Philos Trans R Soc Lond B Biol Sci ; 375(1801): 20190402, 2020 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-32362254

RESUMO

Chloroplast-to-nucleus retrograde signalling (RS) is known to impact plant growth and development. In Arabidopsis, we and others have shown that RS affects seedling establishment by inhibiting deetiolation. In the presence of lincomycin, a chloroplast protein synthesis inhibitor that triggers RS, Arabidopsis light-grown seedlings display partial skotomorphogenesis with undeveloped plastids and closed cotyledons. By contrast, RS in monocotyledonous has been much less studied. Here, we show that emerging rice seedlings exposed to lincomycin do not accumulate chlorophyll but otherwise remain remarkably unaffected. However, by using high red (R) and blue (B) monochromatic lights in combination with lincomycin, we have uncovered a RS inhibition of length and a reduction in the B light-induced declination of the second leaf. Furthermore, we present data showing that seedlings grown in high B and R light display different non-photochemical quenching capacity. Our findings support the view that excess B and R light impact seedling photomorphogenesis differently to photoprotect and optimize the response to high-light stress. This article is part of the theme issue 'Retrograde signalling from endosymbiotic organelles'.


Assuntos
Clorofila/metabolismo , Proteínas de Cloroplastos/metabolismo , Estiolamento/efeitos da radiação , Luz , Lincomicina/farmacologia , Oryza/efeitos da radiação , Inibidores da Síntese de Proteínas/farmacologia , Transdução de Sinais/efeitos da radiação , Oryza/fisiologia , Plântula/fisiologia , Plântula/efeitos da radiação
3.
Physiol Plant ; 169(3): 480-490, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32379360

RESUMO

Hypocotyl elongation relies on directional cell expansion, a process under light and circadian clock control. Under short photoperiods (SD), hypocotyl elongation in Arabidopsis thaliana follows a rhythmic pattern, a process in which circadian morning-to-midnight waves of the transcriptional repressors PSEUDO-RESPONSE REGULATORS (PRRs) jointly gate PHYTOCHROME-INTERACTING FACTOR (PIF) activity to dawn. Previously, we described CYCLING DOF FACTOR 5 (CDF5) as a target of this antagonistic PRR/PIF dynamic interplay. Under SD, PIFs induce CDF5 accumulation specifically at dawn, when it promotes the expression of positive cell elongation regulators such as YUCCA8 to induce growth. In contrast to SD, hypocotyl elongation under long days (LD) is largely reduced. Here, we examine whether CDF5 is an actor in this photoperiod specific regulation. We report that transcription of CDF5 is robustly induced in SD compared to LD, in accordance with PIFs accumulating to higher levels in SD, and in contrast to other members of the CDF family, whose expression is mainly clock regulated and have similar waveforms in SD and LD. Notably, when CDF5 was constitutively expressed under LD, CDF5 protein accumulated to levels comparable to SD but was inactive in promoting cell elongation. Similar results were observed for CDF1. Our findings indicate that both CDFs can promote cell elongation specifically in shorter photoperiods, however, their activity in LD is inhibited at the post-translational level. These data not only expand our understanding of the biological role of CDF transcription factors, but also identify a previously unrecognized regulatory layer in the photoperiodic response of hypocotyl elongation.


Assuntos
Proteínas de Arabidopsis , Fotoperíodo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Regulação da Expressão Gênica de Plantas , Hipocótilo/genética , Luz
4.
Curr Biol ; 28(2): 311-318.e5, 2018 01 22.
Artigo em Inglês | MEDLINE | ID: mdl-29337078

RESUMO

Plants coordinate their growth and development with the environment through integration of circadian clock and photosensory pathways. In Arabidopsis thaliana, rhythmic hypocotyl elongation in short days (SD) is enhanced at dawn by the basic-helix-loop-helix (bHLH) transcription factors PHYTOCHROME-INTERACTING FACTORS (PIFs) directly inducing expression of growth-related genes [1-6]. PIFs accumulate progressively during the night and are targeted for degradation by active phytochromes in the light, when growth is reduced. Although PIF proteins are also detected during the day hours [7-10], their growth-promoting activity is inhibited through unknown mechanisms. Recently, the core clock components and transcriptional repressors PSEUDO-RESPONSE REGULATORS PRR9/7/5 [11, 12], negative regulators of hypocotyl elongation [13, 14], were described to associate to G boxes [15], the DNA motifs recognized by the PIFs [16, 17], suggesting that PRR and PIF function might converge antagonistically to regulate growth. Here we report that PRR9/7/5 and PIFs physically interact and bind to the same promoter region of pre-dawn-phased, growth-related genes, and we identify the transcription factor CDF5 [18, 19] as target of this interplay. In SD, CDF5 expression is sequentially repressed from morning to dusk by PRRs and induced pre-dawn by PIFs. Consequently, CDF5 accumulates specifically at dawn, when it induces cell elongation. Our findings provide a framework for recent TIMING OF CAB EXPRESSION 1 (TOC1/PRR1) data [5, 20] and reveal that the long described circadian morning-to-midnight waves of the PRR transcriptional repressors (PRR9, PRR7, PRR5, and TOC1) [21] jointly gate PIF activity to dawn to prevent overgrowth through sequential regulation of common PIF-PRR target genes such as CDF5.


Assuntos
Proteínas de Arabidopsis/genética , Arabidopsis/crescimento & desenvolvimento , Arabidopsis/genética , Relógios Circadianos/genética , Fotoperíodo , Regiões Promotoras Genéticas/fisiologia , Fatores de Transcrição/genética , Proteínas de Arabidopsis/metabolismo , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Regulação da Expressão Gênica de Plantas , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...