Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Nano ; 17(7): 6649-6663, 2023 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-36989423

RESUMO

Cartilage tissue exhibits early degenerative changes with onset of osteoarthritis (OA). Early diagnosis is critical as there is only a narrow time window during which therapeutic intervention can reverse disease progression. Computed tomography (CT) has been considered for cartilage imaging as a tool for early OA diagnosis by introducing radio-opaque contrast agents like ioxaglate (IOX) into the joint. IOX, however, is anionic and thus repelled by negatively charged cartilage glycosaminoglycans (GAGs) that hinders its intra-tissue penetration and partitioning, resulting in poor CT attenuation. This is further complicated by its short intra-tissue residence time owing to rapid clearance from joints, which necessitates high doses causing toxicity concerns. Here we engineer optimally charged cationic contrast agents based on cartilage negative fixed charge density by conjugating cartilage targeting a cationic peptide carrier (CPC) and multi-arm avidin nanoconstruct (mAv) to IOX, such that they can penetrate through the full thickness of cartilage within 6 h using electrostatic interactions and elicit similar CT signal with about 40× lower dose compared to anionic IOX. Their partitioning and distribution correlate strongly with spatial GAG distribution within healthy and early- to late-stage arthritic bovine cartilage tissues at 50-100× lower doses than other cationic contrast agents used in the current literature. The use of contrast agents at low concentrations also allowed for delineation of cartilage from subchondral bone as well as other soft tissues in rat tibial joints. These contrast agents are safe to use at current doses, making CT a viable imaging modality for early detection of OA and staging of its severity.


Assuntos
Cartilagem Articular , Osteoartrite , Ratos , Animais , Bovinos , Meios de Contraste/uso terapêutico , Cartilagem Articular/diagnóstico por imagem , Tomografia Computadorizada por Raios X/métodos , Ácido Ioxáglico/uso terapêutico , Cátions , Osteoartrite/diagnóstico por imagem , Diagnóstico Precoce
2.
Angew Chem Int Ed Engl ; 61(41): e202204576, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-35979844

RESUMO

Aptamers face challenges for use outside the ideal conditions in which they are developed. These difficulties are most palpable in vivo due to nuclease activities, rapid clearance, and off-target binding. Herein, we demonstrate that a polyphosphodiester-backboned molecular brush can suppress enzymatic digestion, reduce non-specific cell uptake, enable long blood circulation, and rescue the bioactivity of a conjugated aptamer in vivo. The backbone along with the aptamer is assembled via solid-phase synthesis, followed by installation of poly(ethylene glycol) (PEG) side chains using a two-step process with near-quantitative efficiency. The synthesis allows for precise control over polymer size and architecture. Consisting entirely of building blocks that are generally recognized as safe for therapeutics, this novel molecular brush is expected to provide a highly translatable route for aptamer-based therapeutics.


Assuntos
Aptâmeros de Nucleotídeos , Oligonucleotídeos , Aptâmeros de Nucleotídeos/química , Oligonucleotídeos/química , Polietilenoglicóis/química
3.
Acta Biomater ; 151: 278-289, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35963518

RESUMO

Charge-based drug delivery has proven to be effective for targeting negatively charged cartilage for the treatment of osteoarthritis. Cartilage is surrounded by synovial fluid (SF), which is comprised of negatively charged hyaluronic acid and hydrophobic proteins that can competitively bind cationic carriers and prevent their transport into cartilage. Here we investigate the relative contributions of charge and hydrophobic effects on the binding of cationic carriers within healthy and arthritic SF by comparing the transport of arginine-rich cartilage targeting cationic peptide carriers with hydrophilic (CPC +14N) or hydrophobic property (CPC +14A). CPC +14N had significantly greater intra-cartilage uptake in presence of SF compared to CPC +14A in-vitro and in vivo. In presence of individual anionic SF constituents, both CPCs maintained similar high intra-cartilage uptake while in presence of hydrophobic constituents, CPC +14N had greater uptake confirming that hydrophobic and not charge interactions are the dominant cause of competitive binding within SF. Results also demonstrate that short-range effects can synergistically stabilize intra-cartilage charge-based binding - a property that can be utilized for enhancing drug-carrier residence time in arthritic cartilage with diminished negative fixed charge density. The work provides a framework for the rational design of cationic carriers for developing targeted therapies for another complex negatively charged environments. STATEMENT OF SIGNIFICANCE: This work demonstrates that hydrophobic and not charge interactions are the dominant cause of the binding of cationic carriers in synovial fluid. Therefore, cationic carriers can be effectively used for cartilage targeting if they are made hydrophilic. This can facilitate clinical translation of various osteoarthritis drugs for cartilage repair that have failed due to a lack of effective cartilage targeting methods. It also demonstrates that short-range hydrogen bonds can synergistically stabilize electrostatic binding in cartilage offering a method for enhancing the targeting and residence time of cationic carriers within arthritic cartilage with reduced charge density. Finally, the cartilage-synovial fluid unit provides an excellent model of a complex negatively charged environment and allows us to generalize these findings and develop targeted therapies for other charged tissue-systems.


Assuntos
Cartilagem Articular , Osteoartrite , Arginina/farmacologia , Ligação Competitiva , Cartilagem/metabolismo , Cartilagem Articular/metabolismo , Cátions/química , Portadores de Fármacos/química , Humanos , Ácido Hialurônico/farmacologia , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Peptídeos/química , Líquido Sinovial/metabolismo
4.
Arthritis Res Ther ; 24(1): 172, 2022 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-35858920

RESUMO

BACKGROUND: Insulin-like growth factor-1 (IGF-1) has the potential to be used for osteoarthritis (OA) treatment but has not been evaluated in clinics yet owing to toxicity concerns. It suffers from short intra-joint residence time and a lack of cartilage targeting following its intra-articular administration. Here, we synthesize an electrically charged cationic formulation of IGF-1 by using a short-length arginine-rich, hydrophilic cationic peptide carrier (CPC) with a net charge of +14, designed for rapid and high uptake and retention in both healthy and arthritic cartilage. METHODS: IGF-1 was conjugated to CPC by using a site-specific sulfhydryl reaction via a bifunctional linker. Intra-cartilage depth of penetration and retention of CPC-IGF-1 was compared with the unmodified IGF-1. The therapeutic effectiveness of a single dose of CPC-IGF-1 was compared with free IGF-1 in an IL-1α-challenged cartilage explant culture post-traumatic OA model. RESULTS: CPC-IGF-1 rapidly penetrated through the full thickness of cartilage creating a drug depot owing to electrostatic interactions with negatively charged aggrecan-glycosaminoglycans (GAGs). CPC-IGF-1 remained bound within the tissue while unmodified IGF-1 cleared out. Treatment with a single dose of CPC-IGF-1 effectively suppressed IL-1α-induced GAG loss and nitrite release and rescued cell metabolism and viability throughout the 16-day culture period, while free IGF at the equivalent dose was not effective. CONCLUSIONS: CPC-mediated depot delivery of IGF-1 protected cartilage by suppressing cytokine-induced catabolism with only a single dose. CPC is a versatile cationic motif that can be used for intra-cartilage delivery of other similar-sized drugs.


Assuntos
Cartilagem Articular , Osteoartrite , Cartilagem Articular/metabolismo , Glicosaminoglicanos/metabolismo , Humanos , Fator de Crescimento Insulin-Like I/metabolismo , Fator de Crescimento Insulin-Like I/farmacologia , Fator de Crescimento Insulin-Like I/uso terapêutico , Osteoartrite/tratamento farmacológico , Osteoartrite/metabolismo , Peptídeos/farmacologia
5.
Biophys J ; 121(18): 3542-3561, 2022 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-35765244

RESUMO

Cationic nanocarriers offer a promising solution to challenges in delivering drugs to negatively charged connective tissues, such as to articular cartilage for the treatment of osteoarthritis (OA). However, little is known about the effects that cationic macromolecules may have on the mechanical properties of cartilage at high interstitial concentrations. We utilized arginine-rich cationic peptide carriers (CPCs) with varying net charge (from +8 to +20) to investigate the biophysical mechanisms of nanocarrier-induced alterations to cartilage biomechanical properties. We observed that CPCs increased the compressive modulus of healthy bovine cartilage explants by up to 70% and decreased the stiffness of glycosaminoglycan-depleted tissues (modeling OA) by 69%; in both cases, the magnitude of the change in stiffness correlated with the uptake of CPC charge variants. Next, we directly measured CPC-induced osmotic deswelling in cartilage tissue due to shielding of charge repulsions between anionic extracellular matrix constituents, with magnitudes of reductions between 36 and 64 kPa. We then demonstrated that electrostatic interactions were required for CPC-induced stiffening to occur, evidenced by no observed increase in tissue stiffness when measured in hypertonic bathing salinity. We applied a non-ideal Donnan osmotic model (under triphasic theory) to separate bulk modulus measurements into Donnan and non-Donnan components, which further demonstrated the conflicting charge-shielding and matrix-stiffening effects of CPCs. These results show that cationic drug carriers can alter tissue mechanical properties via multiple mechanisms, including the expected charge shielding as well as a novel stiffening phenomenon mediated by physical linkages. We introduce a model for how the magnitudes of these mechanical changes depend on tunable physical properties of the drug carrier, including net charge, size, and spatial charge distribution. We envision that the results and theory presented herein will inform the design of future cationic drug-delivery systems intended to treat diseases in a wide range of connective tissues.


Assuntos
Cartilagem Articular , Portadores de Fármacos , Animais , Arginina , Cátions/química , Bovinos , Portadores de Fármacos/química , Glicosaminoglicanos , Modelos Biológicos , Peptídeos/química
6.
Cartilage ; 13(2): 19476035221093072, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35491681

RESUMO

OBJECTIVE: Kartogenin (KGN) has proven as a both chondrogenic and chondroprotective drug for osteoarthritis (OA) therapy. However, being a small hydrophobic molecule, KGN suffers from rapid joint clearance and inability to penetrate cartilage to reach chondrocytes following intra-articular administration. As such multiple high doses are needed that can lead to off-target effects including stimulation and tissue outgrowth. Here we design charge-based cartilage targeting formulation of KGN by using a multi-arm cationic nano-construct of Avidin (mAv) that can rapidly penetrate into cartilage in high concentrations owing to weak-reversible electrostatic binding interactions with negatively charged aggrecan-glycosaminoglycans (GAGs) and form an extended-release drug depot such that its therapeutic benefit can be reaped in just a single dose. DESIGN: We synthesized 2 novel formulations, one with a releasable ester linker (mAv-OH-KGN, release half-life ~58 h) that enables sustained KGN release over 2 weeks and another with a non-releasable amide linker (mAv-NH-KGN) that relies on mAv's ability to be uptaken and endocytosed by chondrocytes for drug delivery. Their effectiveness in suppressing cytokine-induced catabolism was evaluated in vitro using cartilage explant culture model. RESULTS: A single 100 µM dose of cartilage homing mAv-KGN was significantly more effective in suppressing cytokine-induced GAG loss, cell death, inflammatory response and in rescuing cell metabolism than a single dose of free KGN; multiple doses of free KGN were needed to match this therapeutic response. CONCLUSION: mAv mediated delivery of KGN is promising and can facilitate clinical translation of KGN for OA treatment with only a single dose.


Assuntos
Avidina , Osteoartrite , Anilidas , Avidina/farmacologia , Avidina/uso terapêutico , Cartilagem , Citocinas , Humanos , Nanoestruturas , Osteoartrite/tratamento farmacológico , Ácidos Ftálicos
7.
Biomater Sci ; 9(12): 4260-4277, 2021 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-33367332

RESUMO

Bovine milk-derived exosomes have recently emerged as a promising nano-vehicle for the encapsulation and delivery of macromolecular biotherapeutics. Here we engineer high purity bovine milk exosomes (mExo) with modular surface tunability for oral delivery of small interfering RNA (siRNA). We utilize a low-cost enrichment method combining casein chelation with differential ultracentrifugation followed by size exclusion chromatography, yielding mExo of high concentration and purity. Using in vitro models, we demonstrate that negatively charged hydrophobic mExos can penetrate multiple biological barriers to oral drug delivery. A hydrophilic polyethylene glycol (PEG) coating was introduced on the mExo surface via passive, stable hydrophobic insertion of a conjugated lipid tail, which significantly reduced mExo degradation in acidic gastric environment and enhanced their permeability through mucin by over 3× compared to unmodified mExo. Both mExo and PEG-mExo exhibited high uptake by intestinal epithelial cells and mediated functional intracellular delivery of siRNA, thereby suppressing the expression of the target green fluorescence protein (GFP) gene by up to 70%. We also show that cationic chemical transfection is significantly more efficient in loading siRNA into mExo than electroporation. The simplicity of isolating high purity mExo in high concentrations and equipping them with tunable surface properties, demonstrated here, paves way for the development of mExo as an effective, scalable platform technology for oral drug delivery of siRNA.


Assuntos
Exossomos , Animais , Bovinos , Sistemas de Liberação de Medicamentos , Leite , Muco , Polietilenoglicóis , RNA Interferente Pequeno
8.
J Vis Exp ; (162)2020 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-32831304

RESUMO

Several negatively charged tissues in the body, like cartilage, present a barrier to the targeted drug delivery due to their high density of negatively charged aggrecans and, therefore, require improved targeting methods to increase their therapeutic response. Because cartilage has a high negative fixed charge density, drugs can be modified with positively charged drug carriers to take advantage of electrostatic interactions, allowing for enhanced intra-cartilage drug transport. Studying the transport of drug carriers is, therefore, crucial towards predicting the efficacy of drugs in inducing a biological response. We show the design of three experiments which can quantify the equilibrium uptake, depth of penetration and non-equilibrium diffusion rate of cationic peptide carriers in cartilage explants. Equilibrium uptake experiments provide a measure of the solute concentration within the cartilage compared to its surrounding bath, which is useful for predicting the potential of a drug carrier in enhancing therapeutic concentration of drugs in cartilage. Depth of penetration studies using confocal microscopy allow for the visual representation of 1D solute diffusion from the superficial to deep zone of cartilage, which is important for assessing whether solutes reach their matrix and cellular target sites. Non-equilibrium diffusion rate studies using a custom-designed transport chamber enables the measurement of the strength of binding interactions with the tissue matrix by characterizing the diffusion rates of fluorescently labeled solutes across the tissue; this is beneficial for designing carriers of optimal binding strength with cartilage. Together, the results obtained from the three transport experiments provide a guideline for designing optimally charged drug carriers which take advantage of weak and reversible charge interactions for drug delivery applications. These experimental methods can also be applied to evaluate the transport of drugs and drug-drug carrier conjugates. Further, these methods can be adapted for the use in targeting other negatively charged tissues such as meniscus, cornea and the vitreous humor.


Assuntos
Cartilagem/metabolismo , Portadores de Fármacos/farmacocinética , Sistemas de Liberação de Medicamentos/métodos , Peptídeos/farmacocinética , Animais , Cartilagem/efeitos dos fármacos , Cátions/química , Difusão , Portadores de Fármacos/administração & dosagem , Portadores de Fármacos/química , Peptídeos/administração & dosagem , Peptídeos/química , Eletricidade Estática
9.
Nano Today ; 342020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32802145

RESUMO

Negatively charged tissues are ubiquitous in the human body and are associated with a number of common diseases yet remain an outstanding challenge for targeted drug delivery. While the anionic proteoglycans are critical for tissue structure and function, they make tissue matrix dense, conferring a high negative fixed charge density (FCD) that makes drug penetration through the tissue deep zones and drug delivery to resident cells extremely challenging. The high negative FCD of these tissues is now being utilized by taking advantage of electrostatic interactions to create positively charged multi-stage delivery methods that can sequentially penetrate through the full thickness of tissues, create a drug depot and target cells. After decades of work on attempting delivery using strong binding interactions, significant advances have recently been made using weak and reversible electrostatic interactions, a characteristic now considered essential to drug penetration and retention in negatively charged tissues. Here we discuss these advances using examples of negatively charged tissues (cartilage, meniscus, tendons and ligaments, nucleus pulposus, vitreous of eye, mucin, skin), and delve into how each of their structures, tissue matrix compositions and high negative FCDs create barriers to drug entry and explore how charge interactions are being used to overcome these barriers. We review work on tissue targeting cationic peptide and protein-based drug delivery, compare and contrast drug delivery designs, and also present examples of technologies that are entering clinical trials. We also present strategies on further enhancing drug retention within diseased tissues of lower FCD by using synergistic effects of short-range binding interactions like hydrophobic and H-bonds that stabilize long-range charge interactions. As electrostatic interactions are incorporated into design of drug delivery materials and used as a strategy to create properties that are reversible, tunable and dynamic, bio-electroceuticals are becoming an exciting new direction of research and clinical work.

10.
Bioelectricity ; 2(2): 68-81, 2020 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-32803148

RESUMO

Biological systems overwhelmingly comprise charged entities generating electrical activity that can have significant impact on biological structure and function. This intrinsic bio-electrical activity can also be harnessed for overcoming the tissue matrix and cell membrane barriers, which have been outstanding challenges for targeted drug delivery, by using rationally designed cationic carriers. The weak and reversible long-range electrostatic interactions with fixed negatively charged groups facilitate electro-diffusive transport of cationic therapeutics through full-tissue thickness to effectively reach intra-tissue, cellular, and intracellular target sites. This article presents a perspective on the promise of using rationally designed cationic biomaterials in targeted drug delivery, the underlying charge-based mechanisms, and bio-transport phenomena while addressing outstanding concerns around toxicity and methods to mitigate them. We also discuss electrically charged drugs that are currently being evaluated in clinical trials and identify areas of further development that have the potential to usher in new treatments.

11.
Sci Rep ; 10(1): 12017, 2020 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-32694557

RESUMO

Low back pain is often the direct result of degeneration of the intervertebral disc. A wide range of therapeutics including anti-catabolic, pro-anabolic factors and chemo-attractants that can stimulate resident cells and recruit endogenous progenitors are under consideration. The avascular nature and the dense matrix of this tissue make it challenging for systemically administered drugs to reach their target cells inside the nucleus pulposus (NP), the central gelatinous region of the intervertebral disc (IVD). Therefore, local intra-discal injection of therapeutic drugs directly into the NP is a clinically relevant delivery approach, however, suffers from rapid and wide diffusion outside the injection site resulting in short lived benefits while causing systemic toxicity. NP has a high negative fixed charge density due to the presence of negatively charged aggrecan glycosaminoglycans that provide swelling pressures, compressive stiffness and hydration to the tissue. This negative fixed charge density can also be used for enhancing intra-NP residence time of therapeutic drugs. Here we design positively charged Avidin grafted branched Dextran nanostructures that utilize long-range binding effects of electrostatic interactions to bind with the intra-NP negatively charged groups. The binding is strong enough to enable a month-long retention of cationic nanostructures within the NP following intra-discal administration, yet weak and reversible to allow movement to reach cells dispersed throughout the tissue. The branched carrier has multiple sites for drug conjugation and can reduce the need for multiple injections of high drug doses and minimize associated side-effects, paving the way for effective clinical translation of potential therapeutics for treatment of low back pain and disc degeneration.


Assuntos
Avidina/administração & dosagem , Dextranos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Disco Intervertebral/efeitos dos fármacos , Nanoestruturas/administração & dosagem , Animais , Avidina/farmacologia , Bovinos , Dextranos/farmacologia , Glicosaminoglicanos , Meia-Vida , Injeções , Degeneração do Disco Intervertebral/tratamento farmacológico , Dor Lombar/tratamento farmacológico , Núcleo Pulposo/efeitos dos fármacos , Núcleo Pulposo/metabolismo , Eletricidade Estática
12.
MethodsX ; 7: 100882, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32405463

RESUMO

Here we describe methods for synthesizing a cationic, multi-arm Avidin (mAv) nano-construct that has a wide range of applications in drug delivery and imaging of negatively charged tissues. We use Avidin-biotin technology that gives the flexibility for conjugating biotinylated Dexamethasone to mAv by simple mixing at room temperature. We also describe methods to control hydrolysis rates of ester linkers to enable sustained (and tunable) drug release rates in therapeutic doses.•Multi-arm structure provides multiple sites for covalent conjugation of drugs•Use of Avidin-biotin reaction gives multi-arm nano-construct a modular design enabling conjugation and delivery of similar sized biotinylated drugs.

13.
J Control Release ; 318: 109-123, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31843642

RESUMO

Targeted drug delivery to joint tissues like cartilage remains a challenge that has prevented clinical translation of promising osteoarthritis (OA) drugs. Local intra-articular (IA) injections of drugs suffer from rapid clearance from the joint space and slow diffusive transport through the dense, avascular cartilage matrix comprised of negatively charged glycosaminoglycans (GAGs). Here we apply drug carriers that leverage electrostatic interactions with the tissue's high negative fixed charge density (FCD) for delivering small molecule drugs to cartilage cell and matrix sites. We demonstrate that a multi-arm cationic nano-construct of Avidin (mAv) with 28 sites for covalent drug conjugation can rapidly penetrate through the full thickness of cartilage in high concentration and have long intra-cartilage residence time in both healthy and arthritic cartilage via weak-reversible binding with negatively charged aggrecans. mAv's intra-cartilage mean uptake was found to be 112× and 33× the equilibration bath concentration in healthy and arthritic (50% GAG depleted) cartilage, respectively. mAv was conjugated with Dexamethasone (mAv-Dex), a broad-spectrum glucocorticoid, using a combination of hydrolysable ester linkers derived from succinic anhydride (SA), 3,3-dimethylglutaric anhydride (GA) and phthalic anhydride (PA) in 2:1:1 M ratio that enabled 50% drug release within 38.5 h followed by sustained release in therapeutic doses over 2 weeks. A single 10 µM low dose of controlled release mAv-Dex (2:1:1) effectively suppressed IL-1α-induced GAG loss, cell death and inflammatory response significantly better than unmodified Dex over 2 weeks in cartilage explant culture models of OA. With this multi-arm design, <1 µM Avidin was needed - a concentration which has been shown to be safe, preventing further GAG loss and cytotoxicity. A charge-based cartilage homing drug delivery platform like this can elicit disease modifying effects as well as facilitate long-term symptomatic pain and inflammation relief by enhancing tissue specificity and prolonging intra-cartilage residence time of OA drugs. This nano-construct thus has high translational potential for enabling intra-cartilage delivery of a broad array of small molecule OA drugs and their combinations to chondrocytes, enabling OA treatment with a single injection of low drug doses and eliminating toxicity issues associated with multiple high dose injections.


Assuntos
Cartilagem Articular , Osteoartrite , Avidina/uso terapêutico , Condrócitos , Portadores de Fármacos/uso terapêutico , Humanos , Injeções Intra-Articulares , Osteoartrite/tratamento farmacológico
14.
Acta Biomater ; 93: 258-269, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-30529083

RESUMO

Drug delivery to avascular, negatively charged tissues like cartilage remains a challenge. The constant turnover of synovial fluid results in short residence time of administered drugs in the joint space and the dense negatively charged matrix of cartilage hinders their diffusive transport. Drugs are, therefore, unable to reach their cell and matrix targets in sufficient doses, and fail to elicit relevant biological response, which has led to unsuccessful clinical trials. The high negative fixed charge density (FCD) of cartilage, however, can be used to convert cartilage from a barrier to drug entry into a depot by making drugs positively charged. Here we design cartilage penetrating and binding cationic peptide carriers (CPCs) with varying net charge, spatial distribution and hydrophobicity to deliver large-sized therapeutics and investigate their electro-diffusive transport in healthy and arthritic cartilage. We showed that CPC uptake increased with increasing net charge up to +14 but dropped as charge increased further due to stronger binding interactions that hindered CPC penetrability and uptake showing that weak-reversible binding is key to enable their penetration through full tissue thickness. Even after 90% GAG depletion, while CPC +14 uptake reduced by over 50% but still had a significantly high value of 148× showing that intra-tissue long-range charge-based binding is further stabilized by short-range H-bond and hydrophobic interactions. The work presents an approach for rational design of cationic carriers based on tissue FCD and properties of macromolecules to be delivered. These design rules can be extended to drug delivery for other avascular, negatively charged tissues. STATEMENT OF SIGNIFICANCE: Osteoarthritis (OA) remains an untreatable disease partly due to short joint residence time of drugs and a lack of delivery methods that can effectively target the dense, avascular, highly negatively charged cartilage tissue. In this study, we designed cartilage penetrating and binding cationic peptide carriers (CPCs) that, due to their optimal charge provide adequate electrical driving force to rapidly transport OA drugs into cartilage and reach their cell and matrix targets in therapeutic doses before drugs exit the joint space. This way cartilage is converted from being a barrier to drug entry into a drug depot that can provide sustained drug release for several weeks. This study also investigates synergistic effects of short-range H-bond and hydrophobic interactions in combination with long-range electrostatic interactions on intra-cartilage solute transport. The work provides rules for rational design of cartilage penetrating charge-based carriers depending on the net charge of tissue (normal versus arthritic), macromolecule to be delivered and whether the application is in drug delivery or tissue imaging.


Assuntos
Cartilagem/efeitos dos fármacos , Preparações de Ação Retardada/química , Portadores de Fármacos/química , Osteoartrite/tratamento farmacológico , Peptídeos/química , Alanina/química , Sequência de Aminoácidos , Animais , Arginina/química , Transporte Biológico , Cátions/química , Bovinos , Preparações de Ação Retardada/administração & dosagem , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Injeções Intra-Articulares , Articulação do Joelho/efeitos dos fármacos , Lisina/química , Técnicas de Síntese em Fase Sólida , Eletricidade Estática , Líquido Sinovial/efeitos dos fármacos
15.
Acta Biomater ; 62: 42-63, 2017 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-28736220

RESUMO

Hydrogels have been recognized as crucial biomaterials in the field of tissue engineering, regenerative medicine, and drug delivery applications due to their specific characteristics. These biomaterials benefit from retaining a large amount of water, effective mass transfer, similarity to natural tissues and the ability to form different shapes. However, having relatively poor mechanical properties is a limiting factor associated with hydrogel biomaterials. Controlling the biomechanical properties of hydrogels is of paramount importance. In this work, firstly, mechanical characteristics of hydrogels and methods employed for characterizing these properties are explored. Subsequently, the most common approaches used for tuning mechanical properties of hydrogels including but are not limited to, interpenetrating polymer networks, nanocomposites, self-assembly techniques, and co-polymerization are discussed. The performance of different techniques used for tuning biomechanical properties of hydrogels is further compared. Such techniques involve lithography techniques for replication of tissues with complex mechanical profiles; microfluidic techniques applicable for generating gradients of mechanical properties in hydrogel biomaterials for engineering complex human tissues like intervertebral discs, osteochondral tissues, blood vessels and skin layers; and electrospinning techniques for synthesis of hybrid hydrogels and highly ordered fibers with tunable mechanical and biological properties. We finally discuss future perspectives and challenges for controlling biomimetic hydrogel materials possessing proper biomechanical properties. STATEMENT OF SIGNIFICANCE: Hydrogels biomaterials are essential constituting components of engineered tissues with the applications in regenerative medicine and drug delivery. The mechanical properties of hydrogels play crucial roles in regulating the interactions between cells and extracellular matrix and directing the cells phenotype and genotype. Despite significant advances in developing methods and techniques with the ability of tuning the biomechanical properties of hydrogels, there are still challenges regarding the synthesis of hydrogels with complex mechanical profiles as well as limitations in vascularization and patterning of complex structures of natural tissues which barricade the production of sophisticated organs. Therefore, in addition to a review on advanced methods and techniques for measuring a variety of different biomechanical characteristics of hydrogels, the new techniques for enhancing the biomechanics of hydrogels are presented. It is expected that this review will profit future works for regulating the biomechanical properties of hydrogel biomaterials to satisfy the demands of a variety of different human tissues.


Assuntos
Materiais Biocompatíveis/uso terapêutico , Materiais Biomiméticos/uso terapêutico , Hidrogéis/uso terapêutico , Engenharia Tecidual/métodos , Animais , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...