Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Rep ; 4: 342-350, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29124223

RESUMO

Transfection of rat skeletal muscle in vivo is a widely used research model. However, gene electrotransfer protocols have been developed for mice and yield variable results in rats. We investigated whether changes in hyaluronidase pre-treatment and plasmid DNA delivery can improve transfection efficiency in rat skeletal muscle. We found that pre-treating the muscle with a hyaluronidase dose suitable for rats (0.56 U/g b.w.) prior to plasmid DNA injection increased transfection efficiency by >200% whereas timing of the pre-treatment did not affect efficiency. Uniformly distributing plasmid DNA delivery across the muscle by increasing the number of plasmid DNA injections further enhanced transfection efficiency whereas increasing plasmid dose from 0.2 to 1.6 µg/g b.w. or vehicle volume had no effect. The optimized protocol resulted in ~80% (CI95%: 79-84%) transfected muscle fibers with a homogenous distribution. We also show that transfection was stable over five weeks of regular exercise or inactivity. Our findings show that species-specific plasmid DNA delivery and hyaluronidase pre-treatment greatly improves transfection efficiency in rat skeletal muscle.

2.
Am J Physiol Endocrinol Metab ; 307(12): E1105-16, 2014 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-25352432

RESUMO

Increased skeletal muscle capillarization is associated with improved glucose tolerance and insulin sensitivity. However, a possible causal relationship has not previously been identified. Therefore, we investigated whether increased skeletal muscle capillarization increases insulin sensitivity. Skeletal muscle-specific angiogenesis was induced by adding the α1-adrenergic receptor antagonist prazosin to the drinking water of Sprague-Dawley rats (n = 33), whereas 34 rats served as controls. Insulin sensitivity was measured ≥40 h after termination of the 3-wk prazosin treatment, which ensured that prazosin was cleared from the blood stream. Whole body insulin sensitivity was measured in conscious, unrestrained rats by hyperinsulinemic euglycemic clamp. Tissue-specific insulin sensitivity was assessed by administration of 2-deoxy-[(3)H]glucose during the plateau phase of the clamp. Whole body insulin sensitivity increased by ∼24%, and insulin-stimulated skeletal muscle 2-deoxy-[(3)H]glucose disposal increased by ∼30% concomitant with an ∼20% increase in skeletal muscle capillarization. Adipose tissue insulin sensitivity was not affected by the treatment. Insulin-stimulated muscle glucose uptake was enhanced independent of improvements in skeletal muscle insulin signaling to glucose uptake and glycogen synthesis, suggesting that the improvement in insulin-stimulated muscle glucose uptake could be due to improved diffusion conditions for glucose in the muscle. The prazosin treatment did not affect the rats on any other parameters measured. We conclude that an increase in skeletal muscle capillarization is associated with increased insulin sensitivity. These data point toward the importance of increasing skeletal muscle capillarization for prevention or treatment of type 2 diabetes.


Assuntos
Resistência à Insulina , Músculo Esquelético/irrigação sanguínea , Músculo Esquelético/metabolismo , Animais , Anti-Hipertensivos/farmacologia , Glucose/metabolismo , Técnica Clamp de Glucose , Insulina/farmacologia , Masculino , Microcirculação/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Prazosina/farmacologia , Ratos , Ratos Sprague-Dawley , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA