Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Plant Microbe Interact ; 36(7): 425-433, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36853196

RESUMO

During virus infection, Argonaute (AGO) proteins bind to Dicer-produced virus small interfering RNAs and target viral RNA based on sequence complementarity, thereby limiting virus proliferation. The Arabidopsis AGO2 protein is important for resistance to multiple viruses, including potato virus X (PVX). In addition, AGO5 is important in systemic defense against PVX. Normally AGO5 is expressed only in reproductive tissues, and its induction by virus infection is thought to be important for its participation in antiviral defense. However, it is unclear what mechanisms induce AGO5 expression in response to virus infection. Here, we show that dde2-2, a mutant compromised in jasmonic acid (JA) biosynthesis, displays constitutive upregulation of AGO5. This mutant also showed increased resistance to PVX and this resistance was dependent on a functional AGO5 gene. Furthermore, methyl jasmonate treatment ablated AGO5 expression in leaves during virus infection and resulted in increased susceptibility to virus. Our results further support a role for AGO5 in antiviral RNA silencing and a negative regulation by JA, a plant hormone associated with defense against plant-feeding arthropods, which are often the vectors of plant viruses. [Formula: see text] Copyright © 2023 The Author(s). This is an open access article distributed under the CC BY-NC-ND 4.0 International license.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Potexvirus , Arabidopsis/metabolismo , Potexvirus/fisiologia , Antivirais/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Interferência de RNA , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Doenças das Plantas
2.
Cell Host Microbe ; 30(4): 489-501.e4, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35247330

RESUMO

High atmospheric humidity levels profoundly impact host-pathogen interactions in plants by enabling the establishment of an aqueous living space that benefits pathogens. The effectors HopM1 and AvrE1 of the bacterial pathogen Pseudomonas syringae have been shown to induce an aqueous apoplast under such conditions. However, the mechanisms by which this happens remain unknown. Here, we show that HopM1 and AvrE1 work redundantly to establish an aqueous living space by inducing a major reprogramming of the Arabidopsis thaliana transcriptome landscape. These effectors induce a strong abscisic acid (ABA) signature, which promotes stomatal closure, resulting in reduced leaf transpiration and water-soaking lesions. Furthermore, these effectors preferentially increase ABA accumulation in guard cells, which control stomatal aperture. Notably, a guard-cell-specific ABA transporter, ABCG40, is necessary for HopM1 induction of water-soaking lesions. This study provides molecular insights into a chain of events of stomatal manipulation that create an ideal microenvironment to facilitate infection.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/farmacologia , Arabidopsis/microbiologia , Proteínas de Arabidopsis/genética , Estômatos de Plantas/microbiologia , Pseudomonas syringae , Água
3.
Virus Res ; 256: 45-49, 2018 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-30086326

RESUMO

Recombinant foot-and-mouth disease virus-like particles (VLPs) can be expressed in a number of expression systems including plants. However, yields in plants have formerly been shown to be low, possibly due to their acid and/or heat lability, previously shown to affect VLP yields produced in other systems. This work describes the introduction of mutations into the FMDV structural protein-encoding gene (P1-2A) which have been previously shown to increase acid and thermostability. VLPs expressed in plants using the mutant constructs had negative rather than positive effects on yield and temperature and acid stability compared to the control.


Assuntos
Vírus da Febre Aftosa/genética , Expressão Gênica , Nicotiana/genética , Proteínas Estruturais Virais/genética , Virossomos/genética , Ácidos , Animais , Vírus da Febre Aftosa/efeitos dos fármacos , Vírus da Febre Aftosa/efeitos da radiação , Temperatura Alta , Proteínas Mutantes/genética , Virossomos/efeitos dos fármacos , Virossomos/efeitos da radiação
4.
Virus Res ; 244: 213-217, 2018 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-29196195

RESUMO

Foot-and-mouth disease (FMD) is a highly contagious disease of cloven-hoofed animals and is endemic in Africa, parts of South America and southern Asia. The causative agent, FMD virus (FMDV) is a member of the genus Aphthovirus, family Picornaviridae. Vaccines currently used against FMDV are chemically inactivated virus strains which are produced under high-level biocontainment facilities, thus raising their cost. The development of recombinant FMDV vaccines has focused predominantly on FMDV virus-like particle (VLP) subunit vaccines for which promising results have been achieved. These VLPs are attractive candidates because they avoid the use of live virus in production facilities, but conserve the complete repertoire of conformational epitopes of the virus. Recombinant FMDV VLPs are formed by the expression and assembly of the three structural proteins VP0, VP1 and VP3. This can be attained by co-expression of the three individual structural capsid proteins or by co-expression of the viral capsid precursor P1-2A together with the viral protease 3C. The latter proteolytically cleaves P1-2A into the respective structural proteins. These VLPS are produced in mammalian or insect cell culture systems, which are expensive and can be easily contaminated. Plants, such as Nicotiana benthamiana, potentially provide a more cost-effective and very highly scalable platform for recombinant protein and VLP production. In this study, P1-2A was transiently expressed in N. benthamiana alone, without the 3C protease. Surprisingly, there was efficient processing of the P1-2A polyprotein into its component structural proteins, and subsequent assembly into VLPs. The yield was ∼0.030µg per gram of fresh leaf material. Partially purified VLPs were preliminarily tested for immunogenicity in mice and shown to stimulate the production of FMDV-specific antibodies. This study, has important implications for simplifying the production and expression of potential vaccine candidates against FMDV in plants, in the absence of 3C expression.


Assuntos
Anticorpos Antivirais/biossíntese , Proteínas do Capsídeo/imunologia , Vírus da Febre Aftosa/efeitos dos fármacos , Febre Aftosa/prevenção & controle , Nicotiana/genética , Vacinas de Partículas Semelhantes a Vírus/biossíntese , Vacinas Virais/biossíntese , Proteases Virais 3C , Animais , Antígenos Virais/genética , Antígenos Virais/imunologia , Proteínas do Capsídeo/genética , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/imunologia , Epitopos/genética , Epitopos/imunologia , Feminino , Febre Aftosa/imunologia , Febre Aftosa/virologia , Vírus da Febre Aftosa/imunologia , Imunização , Injeções Subcutâneas , Camundongos , Camundongos Endogâmicos BALB C , Precursores de Proteínas/genética , Precursores de Proteínas/imunologia , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Nicotiana/química , Nicotiana/metabolismo , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/genética , Proteínas Virais/genética , Proteínas Virais/imunologia , Proteínas Estruturais Virais/genética , Proteínas Estruturais Virais/imunologia , Vacinas Virais/administração & dosagem , Vacinas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...