Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
ACS Appl Bio Mater ; 2022 Sep 23.
Artigo em Inglês | MEDLINE | ID: mdl-36150217

RESUMO

Globally, the leading causes of natural death are attributed to coronary heart disease and type 1 and type 2 diabetes. High blood pressure levels, high cholesterol levels, smoking, and poor eating habits lead to the agglomeration of plaque in the arteries, reducing the blood flow. The implantation of devices used to unclog vessels, known as stents, sometimes results in a lack of irrigation due to the excessive proliferation of endothelial tissue within the blood vessels and is known as restenosis. The use of drug-eluting stents (DESs) to deliver antiproliferative drugs has led to the development of different encapsulation techniques. However, due to the potency of the drugs used in the initial stent designs, a chronic inflammatory reaction of the arterial wall known as thrombosis can cause a myocardial infarction (MI). One of the most promising drugs to reduce this risk is everolimus, which can be encapsulated in lipid systems for controlled release directly into the artery. This review aims to discuss the current status of stent design, fabrication, and functionalization. Variables such as the mechanical properties, metals and their alloys, drug encapsulation and controlled elution, and stent degradation are also addressed. Additionally, this review covers the use of polymeric surface coatings on stents and the recent advances in layer-by-layer coating and drug delivery. The advances in nanoencapsulation techniques such as liposomes and micro- and nanoemulsions and their functionalization in bioresorbable, drug-eluting stents are also highlighted.

2.
Molecules ; 26(15)2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34361575

RESUMO

Glass ionomer cements and resin-based composites are promising materials in restorative dentistry. However, their limited mechanical properties and the risk of bulk/marginal fracture compromise their lifespan. Intensive research has been conducted to understand and develop new materials that can mimic the functional behavior of the oral cavity. Nanotechnological approaches have emerged to treat oral infections and become a part of scaffolds for tissue regeneration. Carbon nanotubes are promising materials to create multifunctional platforms for dental applications. This review provides a comprehensive survey of and information on the status of this state-of-the-art technology and describes the development of glass ionomers reinforced with carbon nanotubes possessing improved mechanical properties. The applications of carbon nanotubes in drug delivery and tissue engineering for healing infections and lesions of the oral cavity are also described. The review concludes with a summary of the current status and presents a vision of future applications of carbon nanotubes in the practice of dentistry.


Assuntos
Portadores de Fármacos , Teste de Materiais , Nanotubos de Carbono/química , Cimentos de Resina , Resinas Acrílicas/química , Resinas Acrílicas/uso terapêutico , Portadores de Fármacos/química , Portadores de Fármacos/uso terapêutico , Humanos , Cimentos de Resina/química , Cimentos de Resina/uso terapêutico , Dióxido de Silício/química , Dióxido de Silício/uso terapêutico , Propriedades de Superfície
3.
Materials (Basel) ; 13(13)2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32630123

RESUMO

The use of hybrid manufacturing to produce bimodal scaffolds has represented a great advancement in tissue engineering. These scaffolds provide a favorable environment in which cells can adhere and produce new tissue. However, there are several areas of opportunity to manufacture structures that provide enough strength and rigidity, while also improving chemical integrity. As an advancement in the manufacturing process of scaffolds, a cooling system was introduced in a fused deposition modeling (FDM) machine to vary the temperature on the printing bed. Two groups of polylactic acid (PLA) scaffolds were then printed at two different bed temperatures. The rate of degradation was evaluated during eight weeks in Hank's Balanced Salt Solution (HBSS) in a controlled environment (37 °C-120 rpm) to assess crystallinity. Results showed the influence of the cooling system on the degradation rate of printed scaffolds after the immersion period. This phenomenon was attributable to the mechanism associated with alkaline hydrolysis, where a higher degree of crystallinity obtained in one group induced greater rates of mass loss. The overall crystallinity was observed, through differential scanning calorimetry (DSC), thermo gravimetric analysis (TGA), and Fourier transformed infrared spectroscopy (FTIR) analysis, to increase with time because of the erosion of some amorphous parts after immersion.

4.
Nano Lett ; 9(4): 1527-33, 2009 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-19260705

RESUMO

We found that multiwalled carbon nanotubes (MWNTs) can be opened longitudinally by intercalation of lithium and ammonia followed by exfoliation. Intercalation of open-ended tubes and exfoliation with acid treatment and abrupt heating provided the best results. The resulting material consists of: (i) multilayered flat graphitic structures (nanoribbons), (ii) partially open MWNTs, and (iii) graphene flakes. We called the completely unwrapped nanotubes ex-MWNTs, and their large number of edge atoms makes them attractive for many applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA