Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
2.
Plant Direct ; 6(8): e432, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36035898

RESUMO

A future in which scientific discoveries are valued and trusted by the general public cannot be achieved without greater inclusion and participation of diverse communities. To envision a path towards this future, in January 2019 a diverse group of researchers, educators, students, and administrators gathered to hear and share personal perspectives on equity, diversity, and inclusion (EDI) in the plant sciences. From these broad perspectives, the group developed strategies and identified tactics to facilitate and support EDI within and beyond the plant science community. The workshop leveraged scenario planning and the richness of its participants to develop recommendations aimed at promoting systemic change at the institutional level through the actions of scientific societies, universities, and individuals and through new funding models to support research and training. While these initiatives were formulated specifically for the plant science community, they can also serve as a model to advance EDI in other disciplines. The proposed actions are thematically broad, integrating into discovery, applied and translational science, requiring and embracing multidisciplinarity, and giving voice to previously unheard perspectives. We offer a vision of barrier-free access to participation in science, and a plant science community that reflects the diversity of our rapidly changing nation, and supports and invests in the training and well-being of all its members. The relevance and robustness of our recommendations has been tested by dramatic and global events since the workshop. The time to act upon them is now.

3.
Plant Cell Rep ; 40(6): 1047-1058, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33704523

RESUMO

KEY MESSAGE: Novel disease resistance gene paralogues are generated by targeted chromosome cleavage of tandem duplicated NBS-LRR gene complexes and subsequent DNA repair in soybean. This study demonstrates accelerated diversification of innate immunity of plants using CRISPR. Nucleotide-binding-site-leucine-rich-repeat (NBS-LRR) gene families are key components of effector-triggered immunity. They are often arranged in tandem duplicated arrays in the genome, a configuration that is conducive to recombinations that will lead to new, chimeric genes. These rearrangements have been recognized as major sources of novel disease resistance phenotypes. Targeted chromosome cleavage by CRISPR/Cas9 can conceivably induce rearrangements and thus emergence of new resistance gene paralogues. Two NBS-LRR families of soy have been selected to demonstrate this concept: a four-copy family in the Rpp1 region (Rpp1L) and a large, complex locus, Rps1 with 22 copies. Copy-number variations suggesting large-scale, CRISPR/Cas9-mediated chromosome rearrangements in the Rpp1L and Rps1 complexes were detected in up to 58.8% of progenies of primary transformants using droplet-digital PCR. Sequencing confirmed development of novel, chimeric paralogs with intact open reading frames. These novel paralogs may confer new disease resistance specificities. This method to diversify innate immunity of plants by genome editing is readily applicable to other disease resistance genes or other repetitive loci.


Assuntos
Sistemas CRISPR-Cas , Resistência à Doença/genética , Glycine max/genética , Plantas Geneticamente Modificadas/genética , Dosagem de Genes , Edição de Genes/métodos , Doenças das Plantas/genética , Proteínas de Plantas/genética
4.
Plant Physiol ; 183(4): 1453-1471, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32457089

RESUMO

Site-directed nucleases (SDNs) used for targeted genome editing are powerful new tools to introduce precise genetic changes into plants. Like traditional approaches, such as conventional crossing and induced mutagenesis, genome editing aims to improve crop yield and nutrition. Next-generation sequencing studies demonstrate that across their genomes, populations of crop species typically carry millions of single nucleotide polymorphisms and many copy number and structural variants. Spontaneous mutations occur at rates of ∼10-8 to 10-9 per site per generation, while variation induced by chemical treatment or ionizing radiation results in higher mutation rates. In the context of SDNs, an off-target change or edit is an unintended, nonspecific mutation occurring at a site with sequence similarity to the targeted edit region. SDN-mediated off-target changes can contribute to a small number of additional genetic variants compared to those that occur naturally in breeding populations or are introduced by induced-mutagenesis methods. Recent studies show that using computational algorithms to design genome editing reagents can mitigate off-target edits in plants. Finally, crops are subject to strong selection to eliminate off-type plants through well-established multigenerational breeding, selection, and commercial variety development practices. Within this context, off-target edits in crops present no new safety concerns compared to other breeding practices. The current generation of genome editing technologies is already proving useful to develop new plant varieties with consumer and farmer benefits. Genome editing will likely undergo improved editing specificity along with new developments in SDN delivery and increasing genomic characterization, further improving reagent design and application.


Assuntos
Genoma de Planta/genética , Produtos Agrícolas/genética , Edição de Genes , Taxa de Mutação , Plantas Geneticamente Modificadas/genética
5.
Plant Cell Physiol ; 57(10): 2058-2075, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27481893

RESUMO

Cell walls of grasses, including cereal crops and biofuel grasses, comprise the majority of plant biomass and intimately influence plant growth, development and physiology. However, the functions of many cell wall synthesis genes, and the relationships among and the functions of cell wall components remain obscure. To better understand the patterns of cell wall accumulation and identify genes that act in grass cell wall biosynthesis, we characterized 30 samples from aerial organs of rice (Oryza sativa cv. Kitaake) at 10 developmental time points, 3-100 d post-germination. Within these samples, we measured 15 cell wall chemical components, enzymatic digestibility and 18 cell wall polysaccharide epitopes/ligands. We also used quantitative reverse transcription-PCR to measure expression of 50 glycosyltransferases, 15 acyltransferases and eight phenylpropanoid genes, many of which had previously been identified as being highly expressed in rice. Most cell wall components vary significantly during development, and correlations among them support current understanding of cell walls. We identified 92 significant correlations between cell wall components and gene expression and establish nine strong hypotheses for genes that synthesize xylans, mixed linkage glucan and pectin components. This work provides an extensive analysis of cell wall composition throughout rice development, identifies genes likely to synthesize grass cell walls, and provides a framework for development of genetically improved grasses for use in lignocellulosic biofuel production and agriculture.


Assuntos
Vias Biossintéticas/genética , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Estudos de Associação Genética , Oryza/crescimento & desenvolvimento , Oryza/genética , Análise por Conglomerados , Epitopos/metabolismo , Perfilação da Expressão Gênica , Genes de Plantas , Glucanos/metabolismo , Ligantes , Análise de Sequência com Séries de Oligonucleotídeos , Análise de Componente Principal
6.
Biotechnol Biofuels ; 9: 99, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27148403

RESUMO

BACKGROUND: Grasses are lignocellulosic materials useful to supply the billion-tons annual requirement for renewable resources that aim to produce transportation fuels and a variety of chemicals. However, the polysaccharides contained in grass cell walls are built in a recalcitrant composite. Deconstruction of these cell walls is still a challenge for the energy-efficient and economically viable transformation of lignocellulosic materials. The varied tissue-specific distribution of cell wall components adds complexity to the origins of cell wall recalcitrance in grasses. This complexity usually led to empirically developed pretreatment processes to overcome recalcitrance. A further complication is that efficient pretreatment procedures generally treat the less recalcitrant tissues more than necessary, which results in the generation of undesirable biomass degradation products. RESULTS: Six different sugarcane hybrids were used as model grasses to evaluate the tissue-specific distribution of hemicelluloses and the role of these components in cell wall recalcitrance. Acetylated glucuronoarabinoxylan (GAX) occurs in all tissues. Mixed-linkage glucan (MLG) was relevant in the innermost regions of the sugarcane internodes (up to 15.4 % w/w), especially in the low-lignin content hybrids. Immunofluorescence microscopy showed that xylans predominated in vascular bundles, whereas MLG occurred mostly in the parenchyma cell walls from the pith region of the hybrids with low-lignin content. Evaluation of the digestibility of sugarcane polysaccharides by commercial enzymes indicated that the cell wall recalcitrance varied considerably along the internode regions and in the sugarcane hybrids. Pith regions of the hybrids with high MLG and low-lignin contents reached up to 85 % cellulose conversion after 72 h of hydrolysis, without any pretreatment. CONCLUSIONS: The collective characteristics of the internode regions were related to the varied recalcitrance found in the samples. Components such as lignin and GAX were critical for the increased recalcitrance, but low cellulose crystallinity index, high MLG contents, and highly substituted GAX contributed to the generation of a less recalcitrant material.

8.
Front Plant Sci ; 6: 628, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26347754

RESUMO

The CELLULOSE SYNTHASE-LIKE F6 (CslF6) gene was previously shown to mediate the biosynthesis of mixed-linkage glucan (MLG), a cell wall polysaccharide that is hypothesized to be tightly associated with cellulose and also have a role in cell expansion in the primary cell wall of young seedlings in grass species. We have recently shown that loss-of-function cslf6 rice mutants do not accumulate MLG in most vegetative tissues. Despite the absence of a structurally important polymer, MLG, these mutants are unexpectedly viable and only show a moderate growth compromise compared to wild type. Therefore these mutants are ideal biological systems to test the current grass cell wall model. In order to gain a better understanding of the role of MLG in the primary wall, we performed in-depth compositional and structural analyses of the cell walls of 3 day-old rice seedlings using various biochemical and novel microspectroscopic approaches. We found that cellulose content as well as matrix polysaccharide composition was not significantly altered in the MLG deficient mutant. However, we observed a significant change in cellulose microfibril bundle organization in mesophyll cell walls of the cslf6 mutant. Using synchrotron source Fourier Transform Mid-Infrared (FTM-IR) Spectromicroscopy for high-resolution imaging, we determined that the bonds associated with cellulose and arabinoxylan, another major component of the primary cell walls of grasses, were in a lower energy configuration compared to wild type, suggesting a slightly weaker primary wall in MLG deficient mesophyll cells. Taken together, these results suggest that MLG may influence cellulose deposition in mesophyll cell walls without significantly affecting anisotropic growth thus challenging MLG importance in cell wall expansion.

9.
Plant Biotechnol J ; 13(7): 903-14, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-25586315

RESUMO

Reduced cell wall recalcitrance and increased C6 monosaccharide content are desirable traits for future biofuel crops, as long as these biomass modifications do not significantly alter normal growth and development. Mixed-linkage glucan (MLG), a cell wall polysaccharide only present in grasses and related species among flowering plants, is comprised of glucose monomers linked by both ß-1,3 and ß-1,4 bonds. Previous data have shown that constitutive production of MLG in barley (Hordeum vulgare) severely compromises growth and development. Here, we used spatio-temporal strategies to engineer Arabidopsis thaliana plants to accumulate significant amounts of MLG in the cell wall by expressing the rice CslF6 MLG synthase using secondary cell wall and senescence-associated promoters. Results using secondary wall promoters were suboptimal. When the rice MLG synthase was expressed under the control of a senescence-associated promoter, we obtained up to four times more glucose in the matrix cell wall fraction and up to a 42% increase in saccharification compared to control lines. Importantly, these plants grew and developed normally. The induction of MLG deposition at senescence correlated with an increase of gluconic acid in cell wall extracts of transgenic plants in contrast to the other approaches presented in this study. MLG produced in Arabidopsis has an altered structure compared to the grass glucan, which likely affects its solubility, while its molecular size is unaffected. The induction of cell wall polysaccharide biosynthesis in senescing tissues offers a novel engineering alternative to enhance cell wall properties of lignocellulosic biofuel crops.


Assuntos
Parede Celular/metabolismo , Glucanos/metabolismo , Células Vegetais/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Polissacarídeos/metabolismo , Envelhecimento/fisiologia , Parede Celular/química , Plantas Geneticamente Modificadas/genética
10.
Plant J ; 79(3): 517-29, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24905498

RESUMO

The glycosyltransferases (GTs) are an important and functionally diverse family of enzymes involved in glycan and glycoside biosynthesis. Plants have evolved large families of GTs which undertake the array of glycosylation reactions that occur during plant development and growth. Based on the Carbohydrate-Active enZymes (CAZy) database, the genome of the reference plant Arabidopsis thaliana codes for over 450 GTs, while the rice genome (Oryza sativa) contains over 600 members. Collectively, GTs from these reference plants can be classified into over 40 distinct GT families. Although these enzymes are involved in many important plant specific processes such as cell-wall and secondary metabolite biosynthesis, few have been functionally characterized. We have sought to develop a plant GTs clone resource that will enable functional genomic approaches to be undertaken by the plant research community. In total, 403 (88%) of CAZy defined Arabidopsis GTs have been cloned, while 96 (15%) of the GTs coded by rice have been cloned. The collection resulted in the update of a number of Arabidopsis GT gene models. The clones represent full-length coding sequences without termination codons and are Gateway® compatible. To demonstrate the utility of this JBEI GT Collection, a set of efficient particle bombardment plasmids (pBullet) was also constructed with markers for the endomembrane. The utility of the pBullet collection was demonstrated by localizing all members of the Arabidopsis GT14 family to the Golgi apparatus or the endoplasmic reticulum (ER). Updates to these resources are available at the JBEI GT Collection website http://www.addgene.org/.


Assuntos
Genômica , Glicosiltransferases/metabolismo , Arabidopsis/enzimologia , Arabidopsis/genética , Arabidopsis/metabolismo , Parede Celular/metabolismo
11.
Mol Plant Microbe Interact ; 27(6): 528-36, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24794921

RESUMO

Lesion mimic mutants have been used to dissect programmed cell death (PCD) and defense-related pathways in plants. The rice lesion-mimic mutant spl11 exhibits race nonspecific resistance to the bacterial pathogen Xanthomonas oryzae pv. oryzae and the fungal pathogen Magnaporthe oryzae. Spl11 encodes an E3 ubiquitin ligase and is a negative regulator of PCD in rice. To study the regulation of Spl11-mediated PCD, we performed a genetic screen and identified three spl11 cell-death suppressor (sds) mutants. These suppressors were characterized for their resistance to X. oryzae pv. oryzae and M. oryzae and for their expression of defense-related genes. The suppression of the cell-death phenotypes was generally correlated with reduced expression of defense-related genes. When rice was challenged with avirulent isolates of M. oryzae, the disease phenotype was unaffected in the sds mutants, indicating that the suppression might be Spl11-mediated pathway specific and may only be involved in basal defense. In addition, we mapped one of the suppressor mutations to a 140-kb interval on the long arm of rice chromosome 1. Identification and characterization of these sds mutants should facilitate our efforts to elucidate the Spl11-mediated PCD pathway.


Assuntos
Regulação da Expressão Gênica de Plantas , Magnaporthe/patogenicidade , Oryza/genética , Doenças das Plantas/imunologia , Imunidade Vegetal , Proteínas de Plantas/genética , Xanthomonas/patogenicidade , Morte Celular , Mapeamento Cromossômico , Mutação , Oryza/imunologia , Oryza/fisiologia , Fenótipo , Doenças das Plantas/microbiologia , Folhas de Planta/genética , Folhas de Planta/imunologia , Folhas de Planta/fisiologia , Proteínas de Plantas/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
12.
PLoS One ; 9(1): e87258, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24498057

RESUMO

The rice U-box/ARM E3 ubiquitin ligase SPL11 negatively regulates programmed cell death (PCD) and disease resistance, and controls flowering time through interacting with the novel RNA/DNA binding KH domain protein SPIN1. Overexpression of Spin1 causes late flowering in transgenic rice under short-day (SD) and long-day (LD) conditions. In this study, we characterized the function of the RNA-binding and SPIN1-interacting 1 (RBS1) protein in flowering time regulation. Rbs1 was identified in a yeast-two-hybrid screen using the full-length Spin1 cDNA as a bait and encodes an RNA binding protein with three RNA recognition motifs. The protein binds RNA in vitro and interacts with SPIN1 in the nucleus. Rbs1 overexpression causes delayed flowering under SD and LD conditions in rice. Expression analyses of flowering marker genes show that Rbs1 overexpression represses the expression of Hd3a under SD and LD conditions. Rbs1 is upregulated in both Spin1 overexpression plants and in the spl11 mutant. Interestingly, Spin1 expression is increased but Spl11 expression is repressed in the Rbs1 overexpression plants. Western blot analysis revealed that the SPIN1 protein level is increased in the Rbs1 overexpression plants and that the RBS1 protein level is also up-regulated in the Spin1 overexpression plants. These results suggest that RBS1 is a new negative regulator of flowering time that itself is positively regulated by SPIN1 but negatively regulated by SPL11 in rice.


Assuntos
Flores/genética , Oryza/genética , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , DNA Complementar/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Fotoperíodo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
13.
Anal Biochem ; 448: 14-22, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24299991

RESUMO

Understanding the intricate metabolic processes involved in plant cell wall biosynthesis is limited by difficulties in performing sensitive quantification of many involved compounds. Hydrophilic interaction liquid chromatography is a useful technique for the analysis of hydrophilic metabolites from complex biological extracts and forms the basis of this method to quantify plant cell wall precursors. A zwitterionic silica-based stationary phase has been used to separate hydrophilic nucleotide sugars involved in cell wall biosynthesis from milligram amounts of leaf tissue. A tandem mass spectrometry operating in selected reaction monitoring mode was used to quantify nucleotide sugars. This method was highly repeatable and quantified 12 nucleotide sugars at low femtomole quantities, with linear responses up to four orders of magnitude to several 100pmol. The method was also successfully applied to the analysis of purified leaf extracts from two model plant species with variations in their cell wall sugar compositions and indicated significant differences in the levels of 6 out of 12 nucleotide sugars. The plant nucleotide sugar extraction procedure was demonstrated to have good recovery rates with minimal matrix effects. The approach results in a significant improvement in sensitivity when applied to plant samples over currently employed techniques.


Assuntos
Carboidratos/análise , Cromatografia Líquida de Alta Pressão , Nucleotídeos/análise , Espectrometria de Massas em Tandem , Arabidopsis/química , Arabidopsis/metabolismo , Carboidratos/química , Parede Celular/química , Parede Celular/metabolismo , Interações Hidrofóbicas e Hidrofílicas , Oryza/química , Oryza/metabolismo , Folhas de Planta/química , Folhas de Planta/metabolismo
14.
Plant Physiol ; 161(4): 1615-33, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23391577

RESUMO

Grass cell wall properties influence food, feed, and biofuel feedstock usage efficiency. The glucuronoarabinoxylan of grass cell walls is esterified with the phenylpropanoid-derived hydroxycinnamic acids ferulic acid (FA) and para-coumaric acid (p-CA). Feruloyl esters undergo oxidative coupling with neighboring phenylpropanoids on glucuronoarabinoxylan and lignin. Examination of rice (Oryza sativa) mutants in a grass-expanded and -diverged clade of BAHD acyl-coenzyme A-utilizing transferases identified four mutants with altered cell wall FA or p-CA contents. Here, we report on the effects of overexpressing one of these genes, OsAt10 (LOC_Os06g39390), in rice. An activation-tagged line, OsAT10-D1, shows a 60% reduction in matrix polysaccharide-bound FA and an approximately 300% increase in p-CA in young leaf tissue but no discernible phenotypic alterations in vegetative development, lignin content, or lignin composition. Two additional independent OsAt10 overexpression lines show similar changes in FA and p-CA content. Cell wall fractionation and liquid chromatography-mass spectrometry experiments isolate the cell wall alterations in the mutant to ester conjugates of a five-carbon sugar with p-CA and FA. These results suggest that OsAT10 is a p-coumaroyl coenzyme A transferase involved in glucuronoarabinoxylan modification. Biomass from OsAT10-D1 exhibits a 20% to 40% increase in saccharification yield depending on the assay. Thus, OsAt10 is an attractive target for improving grass cell wall quality for fuel and animal feed.


Assuntos
Aciltransferases/metabolismo , Metabolismo dos Carboidratos , Parede Celular/enzimologia , Ácidos Cumáricos/metabolismo , Oryza/citologia , Oryza/enzimologia , Proteínas de Plantas/metabolismo , Acetil-CoA C-Aciltransferase/metabolismo , Ácidos Cumáricos/química , DNA Bacteriano/genética , Regulação da Expressão Gênica no Desenvolvimento , Regulação da Expressão Gênica de Plantas , Testes Genéticos , Genoma de Planta/genética , Glucose/metabolismo , Padrões de Herança/genética , Lignina/metabolismo , Mutagênese Insercional/genética , Mutação/genética , Oryza/genética , Oryza/crescimento & desenvolvimento , Penicillium/metabolismo , Fenótipo , Filogenia , Folhas de Planta/metabolismo , Análise de Componente Principal , Solubilidade , Ácido Trifluoracético/metabolismo
15.
Plant Signal Behav ; 8(2): e23143, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23299432

RESUMO

(1,3; 1,4)-ß-D-glucan, also known as mixed linkage glucan (MLG), is a polysaccharide that in flowering plants is unique to the cell walls of grasses and other related members of Poales. MLG is highly abundant in endosperm cell walls, where it is considered a storage carbohydrate. In vegetative tissues, MLG transiently accumulates in the primary cell walls of young, elongating organs. In evolutionary distant species such as Equisetum, MLG accumulates predominantly in old tissues in the stems. Similarly, we have recently shown that rice accumulates a large amount of MLG in mature stems, which prompted us to re-evaluate the hypothesis that MLG is solely related to growth in grass vegetative tissues. Here, we summarize data that confirms the presence of MLG in secondary cell walls and mature tissues in rice and other grasses. Along with these results, we discuss additional evidence indicating a broader role for MLG than previously considered.


Assuntos
Parede Celular/metabolismo , Glucanos/metabolismo , Poaceae/metabolismo , Polissacarídeos/metabolismo , Equisetum/metabolismo
17.
Plant Physiol ; 159(1): 56-69, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22388489

RESUMO

Mixed-linkage glucan (MLG) is a cell wall polysaccharide containing a backbone of unbranched (1,3)- and (1,4)-linked ß-glucosyl residues. Based on its occurrence in plants and chemical characteristics, MLG has primarily been associated with the regulation of cell wall expansion due to its high and transient accumulation in young, expanding tissues. The Cellulose synthase-like F (CslF) subfamily of glycosyltransferases has previously been implicated in mediating the biosynthesis of this polymer. We confirmed that the rice (Oryza sativa) CslF6 gene mediates the biosynthesis of MLG by overexpressing it in Nicotiana benthamiana. Rice cslf6 knockout mutants show a slight decrease in height and stem diameter but otherwise grew normally during vegetative development. However, cslf6 mutants display a drastic decrease in MLG content (97% reduction in coleoptiles and virtually undetectable in other tissues). Immunodetection with an anti-MLG monoclonal antibody revealed that the coleoptiles and leaves retain trace amounts of MLG only in specific cell types such as sclerenchyma fibers. These results correlate with the absence of endogenous MLG synthase activity in mutant seedlings and 4-week-old sheaths. Mutant cell walls are weaker in mature stems but not seedlings, and more brittle in both stems and seedlings, compared to wild type. Mutants also display lesion mimic phenotypes in leaves, which correlates with enhanced defense-related gene expression and enhanced disease resistance. Taken together, our results underline a weaker role of MLG in cell expansion than previously thought, and highlight a structural role for MLG in nonexpanding, mature stem tissues in rice.


Assuntos
Parede Celular/metabolismo , Glucanos/metabolismo , Glucosiltransferases/metabolismo , Oryza/enzimologia , Anticorpos Monoclonais/metabolismo , Ativação Enzimática , Regulação da Expressão Gênica de Plantas , Técnicas de Inativação de Genes , Genes de Plantas , Mutação , Oryza/genética , Oryza/microbiologia , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Imunidade Vegetal , Folhas de Planta/genética , Folhas de Planta/metabolismo , Folhas de Planta/microbiologia , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Caules de Planta/metabolismo , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Plantas Geneticamente Modificadas/microbiologia , Plântula/metabolismo , Nicotiana/genética , Nicotiana/metabolismo , Xanthomonas/imunologia , Xanthomonas/patogenicidade
18.
Plant Methods ; 7: 26, 2011 Aug 18.
Artigo em Inglês | MEDLINE | ID: mdl-21851585

RESUMO

We outline a high throughput procedure that improves outlier detection in cell wall screens using FT-NIR spectroscopy of plant leaves. The improvement relies on generating a calibration set from a subset of a mutant population by taking advantage of the Mahalanobis distance outlier scheme to construct a monosaccharide range predictive model using PLS regression. This model was then used to identify specific monosaccharide outliers from the mutant population.

19.
PLoS Genet ; 6(9): e1001123, 2010 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-20862311

RESUMO

Rice NH1 (NPR1 homolog 1) is a key mediator of innate immunity. In both plants and animals, the innate immune response is often accompanied by rapid cell death at the site of pathogen infection. Over-expression of NH1 in rice results in resistance to the bacterial pathogen, Xanthomonas oryzae pv. oryzae (Xoo), constitutive expression of defense related genes and enhanced benzothiadiazole (BTH)- mediated cell death. Here we describe a forward genetic screen that identified a suppressor of NH1-mediated lesion formation and resistance, snl6. Comparative genome hybridization and fine mapping rapidly identified the genomic location of the Snl6 gene. Snl6 is a member of the cinnamoyl-CoA reductase (CCR)-like gene family. We show that Snl6 is required for NH1-mediated resistance to Xoo. Further, we show that Snl6 is required for pathogenesis-related gene expression. In contrast to previously described CCR family members, disruption of Snl6 does not result in an obvious morphologic phenotype. Snl6 mutants have reduced lignin content and increased sugar extractability, an important trait for the production of cellulosic biofuels. These results suggest the existence of a conserved group of CCR-like genes involved in the defense response, and with the potential to alter lignin content without affecting development.


Assuntos
Aldeído Oxirredutases/genética , Imunidade/genética , Família Multigênica/genética , Oryza/enzimologia , Oryza/microbiologia , Proteínas de Plantas/genética , Xanthomonas/fisiologia , Aldeído Oxirredutases/metabolismo , Alelos , Carboidratos/isolamento & purificação , Cromossomos de Plantas/genética , Coenzima A Ligases/metabolismo , Hibridização Genômica Comparativa , Regulação da Expressão Gênica de Plantas , Genes de Plantas/genética , Imunidade Inata/genética , Imunidade Inata/imunologia , Lignina/metabolismo , Mutação/genética , Oryza/genética , Oryza/imunologia , Fenilalanina Amônia-Liase , Mapeamento Físico do Cromossomo , Doenças das Plantas/genética , Doenças das Plantas/imunologia , Doenças das Plantas/microbiologia , Proteínas de Plantas/metabolismo , Interferência de RNA
20.
Curr Opin Biotechnol ; 21(2): 218-24, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20181473

RESUMO

Research and development efforts for biofuel production are targeted at converting plant biomass into renewable liquid fuels. Major obstacles for biofuel production include lack of biofuel crop domestication, low oil yields from crop plants as well as recalcitrance of lignocellulose to chemical and enzymatic breakdown. Researchers are expanding the genetic and genomic resources available for crop improvement, elucidating lipid metabolism to facilitate manipulation of fatty acid biosynthetic pathways and studying how plant cell walls are synthesized and assembled. This knowledge will be used to produce the next generation of biofuel crops by increasing fatty acid content and by optimizing the hydrolysis of plant cell walls to release fermentable sugars.


Assuntos
Biocombustíveis , Conservação dos Recursos Naturais/métodos , Produtos Agrícolas/genética , Alimentos Geneticamente Modificados , Plantas Geneticamente Modificadas/fisiologia , Sequência de Bases , Dados de Sequência Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...