Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
PeerJ ; 5: e2882, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28194308

RESUMO

BACKGROUND: The adaptive maintenance of flower color variation is frequently attributed to pollinators partly because they preferentially visit certain flower phenotypes. We tested whether Gentiana lutea-which shows a flower color variation (from orange to yellow) in the Cantabrian Mountains range (north of Spain)-is locally adapted to the pollinator community. METHODS: We transplanted orange-flowering individuals to a population with yellow-flowering individuals and vice versa, in order to assess whether there is a pollination advantage in the local morph by comparing its visitation rate with the foreign morph. RESULTS: Our reciprocal transplant experiment did not show clear local morph advantage in overall visitation rate: local orange flowers received more visits than foreign yellow flowers in the orange population, while both local and foreign flowers received the same visits in the yellow population; thus, there is no evidence of local adaptation in Gentiana lutea to the pollinator assemblage. However, some floral visitor groups (such as Bombus pratorum, B. soroensis ancaricus and B. lapidarius decipiens) consistently preferred the local morph to the foreign morph whereas others (such as Bombus terrestris) consistently preferred the foreign morph. DISCUSSION: We concluded that there is no evidence of local adaptation to the pollinator community in each of the two G. lutea populations studied. The consequences for local adaptation to pollinator on G. lutea flower color would depend on the variation along the Cantabrian Mountains range in morph frequency and pollinator community composition.

2.
PLoS One ; 11(9): e0162410, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27589396

RESUMO

Flower color is an important characteristic that determines the commercial value of ornamental plants. Gentian flowers occur in a limited range of colors because this species is not widely cultivated as a cut flower. Gentiana lutea L. var. aurantiaca (abbr, aurantiaca) is characterized by its orange flowers, but the specific pigments responsible for this coloration are unknown. We therefore investigated the carotenoid and flavonoid composition of petals during flower development in the orange-flowered gentian variety of aurantiaca and the yellow-flowered variety of G. lutea L. var. lutea (abbr, lutea). We observed minor varietal differences in the concentration of carotenoids at the early and final stages, but only aurantiaca petals accumulated pelargonidin glycosides, whereas these compounds were not found in lutea petals. We cloned and sequenced the anthocyanin biosynthetic gene fragments from petals, and analyzed the expression of these genes in the petals of both varieties to determine the molecular mechanisms responsible for the differences in petal color. Comparisons of deduced amino acid sequences encoded by the isolated anthocyanin cDNA fragments indicated that chalcone synthase (CHS), chalcone isomerase (CHI), anthocyanidin synthase 1 (ANS1) and ANS2 are identical in both aurantiaca and lutea varieties whereas minor amino acid differences of the deduced flavonone 3-hydroxylase (F3H) and dihydroflavonol 4-reductase (DFR) between both varieties were observed. The aurantiaca petals expressed substantially higher levels of transcripts representing CHS, F3H, DFR, ANS and UDP-glucose:flavonoid-3-O-glucosyltransferase genes, compared to lutea petals. Pelargonidin glycoside synthesis in aurantiaca petals therefore appears to reflect the higher steady-state levels of pelargonidin synthesis transcripts. Moreover, possible changes in the substrate specificity of DFR enzymes may represent additional mechanisms for producing red pelargonidin glycosides in petals of aurantiaca. Our report describing the exclusive accumulation of pelargonidin glycosides in aurantiaca petals may facilitate the modification of gentian flower color by the production of red anthocyanins.


Assuntos
Antocianinas/análise , Carotenoides/análise , Cor , Flores/química , Regulação da Expressão Gênica de Plantas , Gentiana/química , Sequência de Aminoácidos , Gentiana/genética , Pigmentação/genética , Proteínas de Plantas/genética
3.
PeerJ ; 4: e1685, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27014509

RESUMO

Angiosperms diversification was primarily driven by pollinator agents, but non-pollinator agents also promoted floral evolution. Gentiana lutea shows pollinator driven flower color variation in NW Spain. We test whether insect herbivores and livestock, which frequently feed in G.lutea, play a role in G. lutea flower color variation, by answering the following questions: (i) Do insect herbivores and grazing livestock show flower color preferences when feeding on G. lutea? (ii) Do mutualists (pollinators) and antagonists (seed predators, insect herbivores and livestock) jointly affect G. lutea reproductive success? Insect herbivores fed more often on yellow flowering individuals but they did not affect seed production, whereas livestock affected seed production but did not show clear color preferences. Our data indicate that flower color variation of G. lutea is not affected by insect herbivores or grazing livestock.

4.
PeerJ ; 3: e1308, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26528404

RESUMO

In Gentiana lutea two varieties are described: G. lutea var. aurantiaca with orange corolla colors and G. lutea var. lutea with yellow corolla colors. Both color varieties co-occur in NW Spain, and pollinators select flower color in this species. It is not known whether a hybridization barrier exists between these G. lutea color varieties. We aim to test the compatibility between flower color varieties in G. lutea and its dependence on pollen vectors. Within a sympatric population containing both flower color morphs, we analyzed differences in reproductive success (number, weight, viability and germinability of seeds) depending on fertilization treatments (autogamy and xenogamy within variety and among varieties). We found a 93% reduction in number of seeds and a 37% reduction in seed weight respectively of autogamy treatments compared to xenogamy crossings. Additionally, reproductive success is higher within color varieties than among varieties, due to a 45% seed viability reduction on hybrids from different varieties. Our results show that G. lutea reproductive success is strongly dependent on pollinators and that a partial hybridization barrier exists between G. lutea varieties.

5.
PLoS One ; 10(7): e0132522, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26172378

RESUMO

Flower color variation among plant populations might reflect adaptation to local conditions such as the interacting animal community. In the northwest Iberian Peninsula, flower color of Gentiana lutea varies longitudinally among populations, ranging from orange to yellow. We explored whether flower color is locally adapted and the role of pollinators and seed predators as agents of selection by analyzing the influence of flower color on (i) pollinator visitation rate and (ii) escape from seed predation and (iii) by testing whether differences in pollinator communities correlate with flower color variation across populations. Finally, (iv) we investigated whether variation in selective pressures explains flower color variation among 12 G. lutea populations. Flower color influenced pollinator visits and differences in flower color among populations were related to variation in pollinator communities. Selective pressures on flower color vary among populations and explain part of flower color differences among populations of G. lutea. We conclude that flower color in G. lutea is locally adapted and that pollinators play a role in this adaptation.


Assuntos
Evolução Molecular , Flores/fisiologia , Gentiana/fisiologia , Pigmentação , Seleção Genética , Adaptação Fisiológica , Animais , Flores/metabolismo , Gentiana/metabolismo , Polinização , Comportamento Predatório , Análise Espacial
6.
BMC Microbiol ; 14: 114, 2014 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-24884713

RESUMO

BACKGROUND: Microbial gene expression is strongly influenced by environmental growth conditions. Comparison of gene expression under different conditions is frequently used for functional analysis and to unravel regulatory networks, however, gene expression responses to co-cultivation with other microorganisms, a common occurrence in nature, is rarely studied under laboratory conditions. To explore cellular responses of the antibiotic-producing fungus Penicillium chrysogenum to prokaryotes, the present study investigates its transcriptional responses during co-cultivation with Bacillus subtilis. RESULTS: Steady-state glucose-limited chemostats of P. chrysogenum grown under penillicin-non-producing conditions were inoculated with B. subtilis. Physiological and transcriptional responses of P. chrysogenum in the resulting mixed culture were monitored over 72 h. Under these conditions, B. subtilis outcompeted P. chrysogenum, as reflected by a three-fold increase of the B. subtilis population size and a two-fold reduction of the P. chrysogenum biomass concentration. Genes involved in the penicillin pathway and in synthesis of the penicillin precursors and side-chain were unresponsive to the presence of B. subtilis. Moreover, Penicillium polyketide synthase and nonribosomal peptide synthase genes were either not expressed or down-regulated. Among the highly responsive genes, two putative α-1,3 endoglucanase (mutanase) genes viz Pc12g07500 and Pc12g13330 were upregulated by more than 15-fold and 8-fold, respectively. Measurement of enzyme activity in the supernatant of mixed culture confirmed that the co-cultivation with B. subtilis induced mutanase production. Mutanase activity was neither observed in pure cultures of P. chrysogenum or B. subtilis, nor during exposure of P. chrysogenum to B. subtilis culture supernatants or heat-inactivated B. subtilis cells. However, mutanase production was observed in cultures of P. chrysogenum exposed to filter-sterilized supernatants of mixed cultures of P. chrysogenum and B. subtilis. Heterologous expression of Pc12g07500 and Pc12g13330 genes in Saccharomyces cerevisiae confirmed that Pc12g07500 encoded an active α-1,3 endoglucanase. CONCLUSION: Time-course transcriptional profiling of P. chrysogenum revealed differentially expressed genes during co-cultivation with B. subtilis. Penicillin production was not induced under these conditions. However, induction of a newly characterized P. chrysogenum gene encoding α-1,3 endoglucanase may enhance the efficacy of fungal antibiotics by degrading bacterial exopolysaccharides.


Assuntos
Bacillus subtilis/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Glicosídeo Hidrolases/metabolismo , Interações Microbianas , Penicillium chrysogenum/crescimento & desenvolvimento , Biomassa , Glicosídeo Hidrolases/genética , Penicillium chrysogenum/genética
7.
Metab Eng ; 14(4): 437-48, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22525490

RESUMO

Industrial production of semi-synthetic cephalosporins by Penicillium chrysogenum requires supplementation of the growth media with the side-chain precursor adipic acid. In glucose-limited chemostat cultures of P. chrysogenum, up to 88% of the consumed adipic acid was not recovered in cephalosporin-related products, but used as an additional carbon and energy source for growth. This low efficiency of side-chain precursor incorporation provides an economic incentive for studying and engineering the metabolism of adipic acid in P. chrysogenum. Chemostat-based transcriptome analysis in the presence and absence of adipic acid confirmed that adipic acid metabolism in this fungus occurs via ß-oxidation. A set of 52 adipate-responsive genes included six putative genes for acyl-CoA oxidases and dehydrogenases, enzymes responsible for the first step of ß-oxidation. Subcellular localization of the differentially expressed acyl-CoA oxidases and dehydrogenases revealed that the oxidases were exclusively targeted to peroxisomes, while the dehydrogenases were found either in peroxisomes or in mitochondria. Deletion of the genes encoding the peroxisomal acyl-CoA oxidase Pc20g01800 and the mitochondrial acyl-CoA dehydrogenase Pc20g07920 resulted in a 1.6- and 3.7-fold increase in the production of the semi-synthetic cephalosporin intermediate adipoyl-6-APA, respectively. The deletion strains also showed reduced adipate consumption compared to the reference strain, indicating that engineering of the first step of ß-oxidation successfully redirected a larger fraction of adipic acid towards cephalosporin biosynthesis.


Assuntos
Cefalosporinas/biossíntese , Engenharia Metabólica/métodos , Penicillium chrysogenum/metabolismo , Acil-CoA Desidrogenases/genética , Acil-CoA Desidrogenases/metabolismo , Acil-CoA Oxidase/genética , Acil-CoA Oxidase/metabolismo , Adipatos/metabolismo , Deleção de Genes , Regulação Fúngica da Expressão Gênica , Glucose/metabolismo , Mitocôndrias/enzimologia , Mitocôndrias/genética , Oxirredução , Peroxissomos/enzimologia , Peroxissomos/genética , Transcriptoma
8.
OMICS ; 16(6): 320-33, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22439693

RESUMO

The multicomponent global regulator Velvet complex has been identified as a key regulator of secondary metabolite production in Aspergillus and Penicillium species. Previous work indicated a massive impact of PcvelA and PclaeA deletions on penicillin production in prolonged batch cultures of P. chrysogenum, as well as substantial changes in transcriptome. The present study investigated the impact of these mutations on product formation and genome-wide transcript profiles under glucose-limited aerobic conditions, relevant for industrial production of ß-lactams. Predicted amino acid sequences of PcVelA and PcLaeA in this strain were identical to those in its ancestor Wisconsin54-1255. Controls were performed to rule out transformation-associated loss of penicillin-biosynthesis clusters. The correct PcvelA and PclaeA deletion strains revealed a small reduction of penicillin G productivity relative to the reference strain, which is a much smaller reduction than previously reported for prolonged batch cultures of similar P. chrysogenum mutants. Chemostat-based transcriptome analysis yielded only 23 genes with a consistent differential response in the PcvelAΔ and PclaeAΔ mutants when grown in the absence of the penicillin G side-chain precursor phenylacetic acid. Eleven of these genes belonged to two small gene clusters, one of which contained a gene with high homology to the aristolochene synthase. These results provide a clear caveat that the impact of the Velvet complex on secondary metabolism in filamentous fungi is strongly context dependent.


Assuntos
Reatores Biológicos , Glucose/metabolismo , Penicilina G/metabolismo , Penicillium chrysogenum/metabolismo , Transcriptoma , beta-Lactamas/metabolismo , Sequência de Bases , Southern Blotting , Primers do DNA , Mutação , Penicillium chrysogenum/genética , Reação em Cadeia da Polimerase , RNA Mensageiro/genética
9.
Eukaryot Cell ; 11(2): 238-49, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22158714

RESUMO

The industrial production of penicillin G by Penicillium chrysogenum requires the supplementation of the growth medium with the side chain precursor phenylacetate. The growth of P. chrysogenum with phenylalanine as the sole nitrogen source resulted in the extracellular production of phenylacetate and penicillin G. To analyze this natural pathway for penicillin G production, chemostat cultures were switched to [U-(13)C]phenylalanine as the nitrogen source. The quantification and modeling of the dynamics of labeled metabolites indicated that phenylalanine was (i) incorporated in nascent protein, (ii) transaminated to phenylpyruvate and further converted by oxidation or by decarboxylation, and (iii) hydroxylated to tyrosine and subsequently metabolized via the homogentisate pathway. The involvement of the homogentisate pathway was supported by the comparative transcriptome analysis of P. chrysogenum cultures grown with phenylalanine and with (NH(4))(2)SO(4) as the nitrogen source. This transcriptome analysis also enabled the identification of two putative 2-oxo acid decarboxylase genes (Pc13g9300 and Pc18g01490). cDNAs of both genes were cloned and expressed in the 2-oxo-acid-decarboxylase-free Saccharomyces cerevisiae strain CEN.PK711-7C (pdc1 pdc5 pdc6Δ aro10Δ thi3Δ). The introduction of Pc13g09300 restored the growth of this S. cerevisiae mutant on glucose and phenylalanine, thereby demonstrating that Pc13g09300 encodes a dual-substrate pyruvate and phenylpyruvate decarboxylase, which plays a key role in an Ehrlich-type pathway for the production of phenylacetate in P. chrysogenum. These results provide a basis for the metabolic engineering of P. chrysogenum for the production of the penicillin G side chain precursor phenylacetate.


Assuntos
Penicilina G/metabolismo , Penicillium chrysogenum/metabolismo , Fenilalanina/metabolismo , Carboxiliases/genética , Carboxiliases/metabolismo , Descarboxilação , Engenharia Metabólica , Penicillium chrysogenum/enzimologia , Fenilacetatos/metabolismo , Ácidos Fenilpirúvicos/metabolismo , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/metabolismo , Transcriptoma
10.
BMC Syst Biol ; 5: 132, 2011 Aug 19.
Artigo em Inglês | MEDLINE | ID: mdl-21854586

RESUMO

BACKGROUND: In microbial production of non-catabolic products such as antibiotics a loss of production capacity upon long-term cultivation (for example chemostat), a phenomenon called strain degeneration, is often observed. In this study a systems biology approach, monitoring changes from gene to produced flux, was used to study degeneration of penicillin production in a high producing Penicillium chrysogenum strain during prolonged ethanol-limited chemostat cultivations. RESULTS: During these cultivations, the biomass specific penicillin production rate decreased more than 10-fold in less than 22 generations. No evidence was obtained for a decrease of the copy number of the penicillin gene cluster, nor a significant down regulation of the expression of the penicillin biosynthesis genes. However, a strong down regulation of the biosynthesis pathway of cysteine, one of the precursors of penicillin, was observed. Furthermore the protein levels of the penicillin pathway enzymes L-α-(δ-aminoadipyl)-L-α-cystenyl-D-α-valine synthetase (ACVS) and isopenicillin-N synthase (IPNS), decreased significantly. Re-cultivation of fully degenerated cells in unlimited batch culture and subsequent C-limited chemostats did only result in a slight recovery of penicillin production. CONCLUSIONS: Our findings indicate that the observed degeneration is attributed to a significant decrease of the levels of the first two enzymes of the penicillin biosynthesis pathway, ACVS and IPNS. This decrease is not caused by genetic instability of the penicillin amplicon, neither by down regulation of the penicillin biosynthesis pathway. Furthermore no indications were obtained for degradation of these enzymes as a result of autophagy. Possible causes for the decreased enzyme levels could be a decrease of the translation efficiency of ACVS and IPNS during degeneration, or the presence of a culture variant impaired in the biosynthesis of functional proteins of these enzymes, which outcompeted the high producing part of the population.


Assuntos
Reatores Biológicos , Microbiologia Industrial/métodos , Modelos Biológicos , Penicilinas/biossíntese , Penicillium chrysogenum/metabolismo , Biologia de Sistemas/métodos , Biomassa , Etanol , Dosagem de Genes/genética , Família Multigênica/genética , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...