Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Integr Environ Assess Manag ; 20(2): 454-464, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37527952

RESUMO

The pesticide registration process in North America, including the USA and Canada, involves conducting a risk assessment based on relatively conservative modeling to predict pesticide concentrations in receiving waterbodies. The modeling framework does not consider some commonly adopted best management practices that can reduce the amount of pesticide that may reach a waterbody, such as vegetative filter strips (VFS). Currently, VFS are being used by growers as an effective way to reduce off-site movement of pesticides, and they are being required or recommended on pesticide labels as a mitigation measure. Given the regulatory need, a pair of multistakeholder workshops were held in Raleigh, North Carolina, to discuss how to incorporate VFS into pesticide risk assessment and risk management procedures within the North American regulatory framework. Because the risk assessment process depends heavily on modeling, one key question was how to quantitatively incorporate VFS into the existing modeling approach. Key outcomes from the workshops include the following: VFS have proven effective in reducing pesticide runoff to surface waterbodies when properly located, designed, implemented, and maintained; Vegetative Filter Strip Modeling System (VFSMOD), a science-based and widely validated mechanistic model, is suitable for further vetting as a quantitative simulation approach to pesticide mitigation with VFS in current regulatory settings; and VFSMOD parametrization rules need to be developed for the North American aquatic exposure assessment. Integr Environ Assess Manag 2024;20:454-464. © 2023 The Authors. Integrated Environmental Assessment and Management published by Wiley Periodicals LLC on behalf of Society of Environmental Toxicology & Chemistry (SETAC).


Assuntos
Praguicidas , Praguicidas/toxicidade , Praguicidas/análise , Medição de Risco , Gestão de Riscos , América do Norte , Canadá
2.
Chemosphere ; 330: 138591, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37037352

RESUMO

Acetaminophen (ACT), sulfapyridine (SPY), ibuprofen (IBP) and docusate (DCT) are pharmaceuticals with widespread usage that experience incomplete removal in wastewater treatment systems. While further removal of these pharmaceuticals from wastewater effluent is desired prior to beneficial reuse, additional treatment technologies are often expensive and energy intensive. This study evaluated the ability of biochar produced from cotton gin waste (CG700) and walnut shells (WS800) to remove four pharmaceuticals (ACT, SPY, IBP, and DCT) from aqueous solution. Physico-chemical properties of the biochars were characterized by Brunauer-Emmett-Teller (BET) analysis, scanning electron microscopy (SEM), Fourier Transform Infrared Spectroscopy (FT-IR), and zeta potential. The increased pyrolysis temperature during the production of WS800 led to an increase in the specific surface area and increased dehydration of the biochar represented by the loss of the OH-group. Fixed-bed column experiments were performed to determine the difference in removal efficiency between the biochars and elucidate the effects of biochar properties on the adsorption capacity for the pharmaceuticals of interest. Results showed that CG700 had a greater affinity for removing DCT (99%) and IBP (50%), while WS800 removed 72% of SPY and 68% of ACT after 24 h. Adsorption was influenced by the solution pH, surface area, net charge, and functional groups of the biochars. The mechanisms for removal included pore filling and diffusion, hydrophobic interactions, hydrogen bonding, and π-π electron donor acceptor interactions. To conduct predictive modeling of the column breakthrough curves, the Thomas, Adams-Bohart, and Yoon-Nelson models were applied to the experimental data. Results demonstrated that these models generally provided a poor fit for the description of asymmetrical breakthrough curves. Overall, the results demonstrate that biochars from cotton gin waste and walnut shells could be used as cost-effective, environmentally friendly alternatives to activated carbon for the removal of pharmaceuticals from aqueous solutions.


Assuntos
Juglans , Poluentes Químicos da Água , Carvão Vegetal/química , Espectroscopia de Infravermelho com Transformada de Fourier , Água/química , Sulfapiridina , Preparações Farmacêuticas , Adsorção , Poluentes Químicos da Água/análise , Cinética , Soluções
3.
J Environ Manage ; 333: 117386, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-36764177

RESUMO

The timing of manure application and placement of manure significantly affects manure nutrient use efficiency and the amount of nutrient lost from a field. Application of manure prior to a minimal precipitation period, and manure application through incorporation, reduces risks associated with nutrient loss through surface runoff. The current study aims to explore potential water quality impacts related to manure application strategies on the timing of application and approach (surface broadcasting or incorporation). The Soil and Water Assessment Tool (SWAT) was used to represent manure application scenarios and quantify potential water quality impacts in Susquehanna River Basin located in the Mid-Atlantic region of the United States. A baseline (business-as-usual) scenario was developed with manure application based on crop planting date and manure storage availability, and surface broadcasting as the application approach. The baseline was compared with a strategically timed manure application considering weather forecasting and manure incorporation. The strategic, weather-based manure application approach reduced TN and TP loading at the outlet by 4% and 6%, respectively. Manure incorporation simulations considering low-disturbance injection showed significant reduction of about 19% for TN and 44% for TP at the watershed outlet. Winter closure of manure application could reduce organic nutrient loss. Winter application of manure in 21% of row cropped areas (2% of whole watershed area) increased organic N and P loading by 10% and 4%, respectively, at watershed outlet.


Assuntos
Agricultura , Qualidade da Água , Esterco , Solo , Tempo (Meteorologia) , Fósforo/análise
4.
J Environ Qual ; 52(2): 328-340, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36334025

RESUMO

Manureshed management guides the sustainable use of manure resources by matching areas of crop demand (nutrient sinks) with areas generating livestock manure (nutrient sources). A better understanding of the impacts of manureshed management on water quality within sensitive watersheds is needed. We quantified the potential water quality benefits of manureshed-oriented management through scenario-based analyses in the Susquehanna River Basin (SRB) using the Soil and Water Assessment Tool. Five manureshed management scenarios were developed and compared with a baseline "business-as-usual" scenario. The baseline assumes manure is less transportable, which means some locations have manure application in excess of crop demand. The "watershed nutrient balance" scenarios assume excess manure from surplus locations is transportable and that manure is applied around the SRB based on crop nutrient demand. The "watershed nutrient balance avoiding runoff prone areas" scenarios assume manure is transportable but not applied in vulnerable landscapes of the SRB. Each scenario was evaluated under two application rates considering crop nitrogen demand (N-based) and phosphorus demand (P-based). Phosphorus-based manureshed management was more effective in water quality improvements than N-based management. Phosphorus-based nutrient balance scenarios simulated 3 and 25% reduction in total N (TN) and total P (TP), respectively, from the baseline scenario at the watershed outlet. The N- and P-based scenarios avoiding runoff prone areas simulated 3 and 6% reduction in TN loss and 4 and 25.2% reduction in TP loss, respectively, from the baseline. Overall, the manureshed management scenarios were more effective in improving the quality of local streams in livestock-intensive regions than at the watershed outlet.


Assuntos
Rios , Qualidade da Água , Animais , Esterco , Solo , Fósforo/análise , Nitrogênio/análise , Gado , Agricultura
5.
J Environ Qual ; 51(6): 1282-1297, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36070520

RESUMO

Per- and polyfluoroalkyl substances (PFAS) are a collective name for thousands of synthetic compounds produced to enhance consumer and industrial products since the 1940s. They do not easily degrade, and some are known to pose serious ecological and human health concerns at trace concentrations (ng L-1 levels). Per- and polyfluoroalkyl substances persist in treated wastewater and are inadvertently introduced into the environment when treated wastewater is reused as an irrigation source. The Pennsylvania State University (PSU) has been spray-irrigating its wastewater at a 2.45 km2 mixed-use agricultural and forested site known as the "Living Filter" since the 1960s. To understand the spatiotemporal patterns of 20 PFAS at the Living Filter, water samples were collected bimonthly from fall 2019 through winter 2021 from the PSU's wastewater effluent and from each of the site's 13 monitoring wells. Crop tissue was collected at the time of harvest to assess PFAS presence in corn silage and tall fescue grown at the study site. Total measured PFAS concentrations in the monitoring wells ranged from nondectable to 155 ng L-1 , with concentrations increasing with the direction of groundwater flow. Concentrations within each well exhibited little temporal variability across sampling events, with mixed relationships between PFAS and groundwater elevation observed between wells. Further, >84% of the PFAS present in livestock feed crops were short-chain compounds, with PFAS consumed annually by livestock fed crops harvested from the site estimated to be 2.46-7.67 mg animal-1 yr-1 . This research provides insight into the potential impacts of long-term beneficial reuse of treated wastewater on groundwater and crop tissue quality.


Assuntos
Fluorocarbonos , Água Subterrânea , Poluentes Químicos da Água , Humanos , Animais , Águas Residuárias , Água , Pennsylvania
6.
J Environ Qual ; 51(5): 1066-1082, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35919971

RESUMO

During the COVID-19 pandemic, wastewater surveillance was leveraged as a powerful tool for monitoring community-scale health. Further, the well-known persistence of some pharmaceuticals through wastewater treatment plants spurred concerns that increased usage of pharmaceuticals during the pandemic would increase the concentrations in wastewater treatment plant effluent. We collected weekly influent and effluent samples from May 2020 through May 2021 from two wastewater treatment plants in central Pennsylvania, the Penn State Water Reclamation Facility and the University Area Joint Authority, that provide effluent for beneficial reuse, including for irrigation. Samples were analyzed for severe acute respiratory syndrome coronavirus 2 (influent only), two over-the-counter medicines (acetaminophen and naproxen), five antibiotics (ampicillin, doxycycline, ofloxacin, sulfamethoxazole, and trimethoprim), two therapeutic agents (remdesivir and dexamethasone), and hydroxychloroquine. Although there were no correlations between pharmaceutical and virus concentration, remdesivir detection occurred when the number of hospitalized patients with COVID-19 increased, and dexamethasone detection co-occurred with the presence of patients with COVID-19 on ventilators. Additionally, Penn State decision-making regarding instruction modes explained the temporal variation of influent pharmaceutical concentrations, with detection occurring primarily when students were on campus. Risk quotients calculated for pharmaceuticals with known effective and lethal concentrations at which 50% of a population is affected for fish, daphnia, and algae were generally low in the effluent; however, some acute risks from sulfamethoxazole were high when students returned to campus. Remdesivir and dexamethasone persisted through the wastewater treatment plants, thereby introducing novel pharmaceuticals directly to soils and surface water. These results highlight connections between human health and water quality and further demonstrate the broad utility of wastewater surveillance.


Assuntos
COVID-19 , Poluentes Químicos da Água , Acetaminofen , Ampicilina , Animais , Antibacterianos/análise , Dexametasona , Doxiciclina , Monitoramento Ambiental/métodos , Humanos , Hidroxicloroquina , Naproxeno , Ofloxacino , Pandemias , Pennsylvania , Preparações Farmacêuticas , Solo , Sulfametoxazol , Trimetoprima , Eliminação de Resíduos Líquidos , Águas Residuárias , Vigilância Epidemiológica Baseada em Águas Residuárias , Poluentes Químicos da Água/análise
7.
Sci Total Environ ; 806(Pt 2): 150607, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34597549

RESUMO

Active ingredients in pharmaceuticals and personal care products (PPCPs) can persist through wastewater treatment plants and be released into the environment where they can inadvertently pose risks to non-target organisms. Emerging contaminants (ECs), including PPCPs, are commonly detected in wastewater effluent. With the increasing beneficial re-use of treated wastewater globally, there is a need to understand how spray-irrigation activities affect the occurrence and persistence of ECs in the environment to which they are introduced. Here, we explore the impacts of wastewater spray-irrigation on nearby ephemeral wetlands (e.g., vernal pools) through the use of grab and Polar Organic Chemical Integrative Sampling (POCIS) techniques. This study sought to determine whether integrative sampling techniques are better suited than traditional grab sampling techniques in assessing the presence and concentrations of ECs in vernal pools by evaluating 34 ECs in six vernal pools in central Pennsylvania. Three pools were impacted by wastewater spray-irrigation activities and three were in a nearby forested area. Results of this study found that POCIS detected a wide range of 25 ECs (log Kow between -2.6 and 9.37) more or, in some cases, equally frequently, relative to grab samples. Additionally, grab samples were found to best capture short-lived elevated inputs of ECs (from irrigation events) while POCIS were found to best capture ECs that were present in vernal pools over a longer period of time (weeks to months). For ECs detected more frequently in grab samples, concentrations were higher compared to time weighted average aqueous concentrations estimated from POCIS. This study advances understanding of the potential impact of wastewater beneficial reuse on vernal pools and informs how best to monitor the presence of ECs in vernal pools using integrative and grab sampling techniques.


Assuntos
Monitoramento Ambiental , Poluentes Químicos da Água , Compostos Orgânicos , Pennsylvania , Águas Residuárias/análise , Poluentes Químicos da Água/análise
8.
Ecol Modell ; 465: 1-109635, 2021 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-34675451

RESUMO

The Chesapeake Bay is the largest, most productive, and most biologically diverse estuary in the continental United States providing crucial habitat and natural resources for culturally and economically important species. Pressures from human population growth and associated development and agricultural intensification have led to excessive nutrient and sediment inputs entering the Bay, negatively affecting the health of the Bay ecosystem and the economic services it provides. The Chesapeake Bay Program (CBP) is a unique program formally created in 1983 as a multi-stakeholder partnership to guide and foster restoration of the Chesapeake Bay and its watershed. Since its inception, the CBP Partnership has been developing, updating, and applying a complex linked modeling system of watershed, airshed, and estuary models as a planning tool to inform strategic management decisions and Bay restoration efforts. This paper provides a description of the 2017 CBP Modeling System and the higher trophic level models developed by the NOAA Chesapeake Bay Office, along with specific recommendations that emerged from a 2018 workshop designed to inform future model development. Recommendations highlight the need for simulation of watershed inputs, conditions, processes, and practices at higher resolution to provide improved information to guide local nutrient and sediment management plans. More explicit and extensive modeling of connectivity between watershed landforms and estuary sub-areas, estuarine hydrodynamics, watershed and estuarine water quality, the estuarine-watershed socioecological system, and living resources will be important to broaden and improve characterization of responses to targeted nutrient and sediment load reductions. Finally, the value and importance of maintaining effective collaborations among jurisdictional managers, scientists, modelers, support staff, and stakeholder communities is emphasized. An open collaborative and transparent process has been a key element of successes to date and is vitally important as the CBP Partnership moves forward with modeling system improvements that help stakeholders evolve new knowledge, improve management strategies, and better communicate outcomes.

9.
J Environ Qual ; 49(6): 1599-1611, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33043471

RESUMO

Although many agricultural watersheds rely heavily on riparian buffer adoption to meet water quality goals, design and management constraints in current policies create adoption barriers. Based on focus group feedback, we developed a flexible buffer design paradigm that varies buffer width, vegetation, and harvesting. Sixteen years of daily-scale nutrient and sediment loads simulated with the Soil and Water Assessment Tool (SWAT) were coupled to the three-zone Riparian Ecosystem Management Model (REMM) to compare the effectiveness of traditional, policy-based buffer designs with designs that are more flexible and integrate features important to local farmers. Buffer designs included (i) 10 m grass, (ii) 15 m grass, (iii) 15 m deciduous trees, (iv) 30 m grass and trees, (v) 30 m grass and trees with trees harvested every 3 yr, and (vi) 30 m grass and trees with grass harvested every year. Allowing harvesting in one zone of the buffer vegetation (either trees or grasses) minimally affected water quality, with annual average percent reductions differing by <5% (p > .05; 76-78% for total nitrogen [TN], 51-55% for total phosphorus [TP], and 68% for sediment). Under the highest input loading conditions, buffers with lower removal efficiencies removed more total mass than did buffers with high removal efficiencies. Thus, by focusing on mass reduction in addition to percent reduction, watershed-wide buffer implementation may be better targeted to TN, TP, and sediment reduced. These findings have important implications for informing flexible buffer design policies and enhanced placement of buffers in watersheds impaired by nutrient and sediment.


Assuntos
Ecossistema , Fósforo , Agricultura , Soluções Tampão , Nitrogênio , Rios , Árvores
10.
J Environ Qual ; 49(3): 613-627, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-33016388

RESUMO

Regulatory watershed mitigation programs typically emphasize widespread adoption of best management practices (BMPs) to meet total maximum daily load (TMDL) goals. To comply with the Chesapeake Bay TMDL, jurisdictions must develop watershed implementation plans (WIPs) to determine the number and type of BMPs to implement. However, the spatial resolution of the bay-level model used to determine these load reduction goals is so coarse that the regulatory plan cannot consider heterogeneity in local conditions, which affects BMP effectiveness. Using the Topo-SWAT modification of the Soil and Water Assessment Tool (SWAT), we simulated two BMP adoption scenarios in the Spring Creek watershed in central Pennsylvania to determine if leveraging fine-scale spatial heterogeneity to place BMPs could achieve the same (or better) nutrient and sediment reduction at a lower cost than the state-level WIP BMP adoption recommendations. Topo-SWAT was initialized with detailed land use and management practice information, systematically calibrated, and validated against 12 yr of observed data. After determining individual BMP cost effectiveness, results were ranked to design a cost-effective BMP adoption scenario that achieved equal or greater load reduction as the WIP scenario for 74% of the cost using eight management-based BMPs: no-till, manure injection, cover cropping, riparian buffers, land retirement, manure application timing, wetland restoration, and nitrogen management (15% less N input). Because watersheds of this size typically represent the smallest modeling unit in the Chesapeake Bay Model, results demonstrate the potential to use watershed models with finer inference scales to improve recommendations for BMP implementation under the Chesapeake Bay TMDL.


Assuntos
Nitrogênio/análise , Solo , Conservação dos Recursos Naturais , Pennsylvania , Áreas Alagadas
11.
J Environ Qual ; 49(3): 557-568, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-33016397

RESUMO

Managing nonpoint sources of nutrients and sediments is the primary challenge for improving conditions in the Susquehanna-Chesapeake basin. Aquatic macroinvertebrates are widely used indicators of stream ecological integrity, but the relationship between nutrient runoff and macroinvertebrate response remains indistinct. Logistical and financial hurdles hinder collection of high-resolution empirical nutrient data, but landscape-based models like the Soil and Water Assessment Tool (SWAT) offer a more practical approach. Nutrient runoff was simulated with SWAT for a small, upland, agricultural Pennsylvania watershed. Three levels of ecological assessment were used to interpret SWAT results. Macroinvertebrate communities (intensive) were sampled at 14 sites and described using an Index of Biotic Integrity (IBI). Biological integrity was moderately degraded in many reaches. The Stream-Wetland-Riparian (SWR) Index (rapid) and landscape metrics (remote) also indicated prevalent agricultural stressors. Baseflow nitrate grab samples, collected once per season, showed no significant relationship with IBI score. Thirty spatiotemporal scales of nutrient data were extracted from SWAT for phosphorus, nitrate, and organic nitrogen. Best subsets regression was performed on IBI scores using SWAT, land cover, and SWR variables. Results were significant (p < .001) with high R2 values (84.8 and 86.2), signifying a negative relationship between instream nutrient concentration and IBI score. This study demonstrates the viability of SWAT as an alternative to in-field nutrient sampling, the value of spatiotemporal scale in model outputs, and the importance of site condition variables in relating nutrients to stream ecological health.


Assuntos
Rios , Solo , Nutrientes , Pennsylvania , Água
12.
Chemosphere ; 245: 125583, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31869673

RESUMO

Occurrence of emerging organic contaminants (EOCs) in surface water bodies can cause adverse effects on non-target organisms. When surface waters are used as drinking water sources, temporal variability in EOC concentrations can potentially impact drinking water quality and human health. To better understand spatiotemporal variability of EOCs in drinking water sources in Central Pennsylvania, EOCs were evaluated in six drinking water sources during a two-year study period (April 2016-June 2018) in the Susquehanna River Basin (SRB). The study was conducted in two phases: Phase I was a spatially distributed sampling approach within the SRB focusing on seven human pharmaceuticals and Phase II was a temporally intensive sampling regime at a single site focusing on a broader range of EOCs. Concentration-discharge relationships were utilized to classify EOC transport dynamics and understand the extent to which hydrologic and anthropogenic factors, such as surface runoff and wastewater effluent, may contribute to EOC occurrence. Overall, EOCs were present at higher concentrations in colder seasons than warmer seasons. Thiamethoxam, a neonicotinoid insecticide, and caffeine exhibited accretion dynamics during high-flow periods, suggesting higher transport during surface runoff events. Human pharmaceuticals known to persist in wastewater effluent were inversely correlated with discharge, indicating dilution characteristics consistent with diminished wastewater signals during high-flow periods. Acetaminophen exhibited near-chemostatic transport dynamics, indicating nonpoint source inputs during high-flow periods. Risk calculations revealed that although EOCs posed medium-to-high risk to aquatic organisms, human health risk through fish consumption was low.


Assuntos
Monitoramento Ambiental , Rios/química , Poluentes Químicos da Água/análise , Organismos Aquáticos , Água Potável , Humanos , Hidrologia , Estações do Ano , Águas Residuárias , Abastecimento de Água/estatística & dados numéricos
13.
J Environ Qual ; 48(4): 1057-1066, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31589682

RESUMO

Over-the-counter and prescription medications are routinely present at detectable levels in surface and groundwater bodies. The presence of these emerging contaminants has raised both environmental and public health concerns, particularly when the water is used for drinking either directly or with additional treatment. However, the frequency of occurrence, range of concentrations, and potential human health risks are not well understood, especially for groundwater supplies. Private wells are often not tested for contaminants regulated by drinking water standards and are even less frequently tested for emerging contaminants. By partnering with the Pennsylvania Master Well Owner Network, water samples were collected from 26 households with private wells in the West Branch of the Susquehanna River basin in central Pennsylvania in winter 2017. All samples were analyzed for six pharmaceuticals (acetaminophen, ampicillin, naproxen, ofloxacin, sulfamethoxazole, and trimethoprim) and one over-the-counter stimulant (caffeine). At least one compound was detected at each site. Ofloxacin and naproxen were the most and least frequently detected compounds, respectively. Concentrations from the groundwater wells were higher than those of nearby surface water samples. However, risk calculations revealed that none of the concentrations measured in groundwater samples posed significant human health risk. A simple, physicochemical-based modeling approach was used to predict pharmaceutical transport from septic absorption field to groundwater and further elucidate variations in detection frequencies. Findings indicate that although septic tanks may act as contaminant sources for groundwater wells, the human health impacts from trace-level pharmaceuticals that may be present are likely minimal.


Assuntos
Água Subterrânea , Poluentes Químicos da Água , Monitoramento Ambiental , Humanos , Pennsylvania , Rios
14.
J Environ Qual ; 48(2): 510-517, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30951133

RESUMO

Computer models are commonly used for predicting risks of runoff P loss from agricultural fields by enabling simulation of various management practices and climatic scenarios. For P loss models to be useful tools, however, they must accurately predict P loss for a wide range of climatic, physiographic, and land management conditions. A complicating factor in developing and evaluating P loss models is the relative scarcity of available measured field data that adequately capture P losses before and after implementing management practices in a variety of physiographic settings. Here, we describe the development of the P Loss in runoff Events from Agricultural fields Database (PLEAD)-a compilation of event-based, field-scale dissolved and/or total P loss runoff loadings from agricultural fields collected at various research sites located in the US Heartland and southern United States. The database also includes runoff and erosion rates; soil-test P; tillage practices; planting and harvesting rates and practices; fertilizer application rate, method, and timing; manure application rate, method, and timing; and livestock grazing density and timing. In total, >1800 individual runoff events-ranging in duration from 0.4 to 97 h-have been included in the database. Event runoff P losses ranged from <0.05 to 1.3 and 3.0 kg P ha for dissolved and total P, respectively. The data contained in this database have been used in multiple research studies to address important modeling questions relevant to P management planning. We provide these data to encourage additional studies by other researchers. The PLEAD database is available at .


Assuntos
Agricultura , Monitoramento Ambiental/métodos , Poluição Difusa/estatística & dados numéricos , Fósforo/análise , Poluentes Químicos da Água/análise , Fertilizantes , Poluição Difusa/análise , Poluição Difusa/prevenção & controle
15.
PLoS One ; 14(3): e0214665, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30921450

RESUMO

Cost-effective heat mitigation strategies are imperative for maintaining milk production and dairy farm profitability in the U.S. with projected climate change. This study investigated the cost-effectiveness of four heat abatement strategies, including Minimal (open barn or shading), Moderate (forced ventilation), High (fans and misting), and Intense (air conditioning). Heat stress and subsequent impacts on milk production per cow were predicted across nine climatic regions in the U.S. for early (2015 to 2034), mid (2045 to 2064) and late (2081 to 2100) 21st century, using downscaled climate projections. Heat abatements were used to adjust predicted milk production losses and illustrate the potential to reduce milk production losses due to heat stress. Economic analysis included a cost-benefit ratio calculation associated with the implementation of each heat abatement. Results showed that milk production losses were expected to accelerate across the U.S. at a mean rate of 174±7 kg/cow/decade, with the fastest rate in the Southeast region. Relative to Minimal heat abatement, Moderate, High, and Intense heat abatements increased annual milk production per cow by 3%, 4%, and 6% during early-21st century, 3%, 6%, and 11% during mid-21st century, and 3%, 8%, and 21% during late-21st century, respectively. The cost effectiveness of different heat abatement strategies generally increased with subsequently stronger heat abatements. In mid- and late-21st century, mean annual net values of High and Intense heat stress abatement implementation approached -$30 to $190 /cow and -$20 to $590 /cow, respectively, with the largest net annual benefit in late-21st century under Intense abatement. Findings from the study demonstrate the value of using downscaled climate projections to shed light on local and regional strategies to abate heat stress on cattle and mitigate potential milk production losses due to climate change.


Assuntos
Bovinos/metabolismo , Indústria de Laticínios/estatística & dados numéricos , Resposta ao Choque Térmico , Leite/metabolismo , Animais , Bovinos/fisiologia , Mudança Climática , Análise Custo-Benefício , Indústria de Laticínios/economia , Umidade , Temperatura , Estados Unidos
16.
Sci Total Environ ; 654: 197-208, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30445321

RESUMO

Land application of wastewater effluent is beneficial for recharging groundwater aquifers and avoiding direct pollutant discharges to surface waters. However, the fate of non-regulated organic wastewater pollutants, such as pharmaceuticals and personal care products (PPCPs), in such wastewater reuse systems is understudied. Here, a 14-month study (October 2016 through December 2017) was conducted to evaluate the fate and potential risks of seven commonly used PPCPs in a local wastewater treatment plant (WWTP) and from 13 groundwater monitoring wells at a spray-irrigation site where effluent has been spray-irrigated since the early 1980s. Acetaminophen and trimethoprim were the most frequently detected (93%) PPCPs in WWTP influent, while in the effluent, caffeine and trimethoprim were detected most frequently (70%). Wastewater treatment generally reduced concentrations of acetaminophen and caffeine by >88%; however, some compounds had low removal or were present at higher concentrations in the effluent compared with influent (e.g. naproxen, sulfamethoxazole, trimethoprim and ofloxacin). Seasonal trends were observed, with higher PPCP concentrations in the WWTP influent and effluent in the winter. Risk calculations conducted on the wastewater effluent suggest that the risk posed by PPCPs that persisted in the effluent are medium to high to aquatic organisms. Detection frequencies of PPCPs were lower in groundwater samples compared to the effluent, with sulfamethoxazole (40%) and caffeine (32%) as the most frequently detected compounds. Similarly, average concentrations of PPCPs in groundwater were found to be nearly two orders of magnitude lower than concentrations in the effluent. Minimal seasonal influence was observed for groundwater samples. Human health risk assessments indicate that concentrations in groundwater, which is used as a drinking water source, appear to pose minimal risk.


Assuntos
Irrigação Agrícola , Monitoramento Ambiental/métodos , Água Subterrânea/química , Preparações Farmacêuticas/análise , Águas Residuárias/química , Poluentes Químicos da Água/análise , Pennsylvania , Medição de Risco , Estações do Ano , Purificação da Água/métodos
17.
Ambio ; 47(6): 657-670, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29397547

RESUMO

Winter manure application elevates nutrient losses and impairment of water quality as compared to manure applications in other seasons. In conjunction with reviewing global distribution of animal densities, we reviewed worldwide mandatory regulations and voluntary guidelines on efforts to reduce off-site nutrient losses associated with winter manure applications. Most of the developed countries implement regulations or guidelines to restrict winter manure application, which range from a regulative ban to guidelines based upon weather and field management conditions. In contrast, developing countries lack such official directives, despite an increasing animal production industry and concern over water quality. An analysis of five case studies reveals that directives are derived from a common rationale to reduce off-site manure nutrient losses, but they are also affected by local socio-economic and biophysical considerations. Successful programs combine site-specific management strategies along with expansion of manure storage to offer farmers greater flexibility in winter manure management.


Assuntos
Agricultura , Esterco , Animais , Regulamentação Governamental , Guias como Assunto , Nitrogênio , Fósforo , Estações do Ano , Qualidade da Água
18.
J Environ Qual ; 46(6): 1365-1371, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29293858

RESUMO

Phosphorus (P) site assessment is used nationally and internationally to assess the vulnerability of agricultural fields to P loss and identify high-risk areas controlling watershed P export. Current efforts to update P site assessment tools must ensure that these tools are representative of the range of conditions to which they will be applied. We sought to identify key parameters available in public GIS data that are descriptive of potential source areas in Pennsylvania and that ensure that modifications of the P Index span all feasible parameter combinations. Relevant soil and topographic variables were compiled for Pennsylvania at 30-m resolution, and areas within 90 m of permanent streams were extracted. Within each county, -means and classification trees were used to identify and create classification rules for topoedaphic groups. Within counties, two to five groups adequately represented near-stream complexity, with available water capacity, hydraulic conductivity, and organic matter being the most important environmental variables. Discontinuities across soil survey boundaries made it impossible to develop clusterings beyond the county level. For county-scale research and management efforts, these groupings provide a manageable approach to identifying representative sites for near-stream agricultural lands. The full set of representative sites across the state enables evaluation of the P Index throughout the full hydrogeomorphic diversity of Pennsylvania. In future work, we can then combine a set of reasonable management practices with each of the main hydrogeomorphological regions resulting from this study and verify the revised P Index against expert knowledge and simulation results.


Assuntos
Fósforo/análise , Poluentes da Água/análise , Agricultura , Pennsylvania , Rios , Solo
19.
J Environ Qual ; 46(6): 1403-1412, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29293863

RESUMO

Timing of manure application to agricultural soils remains a contentious topic in nutrient management planning, particularly with regard to impacts on nutrient loss in runoff and downstream water quality. We evaluated the effects of seasonal manure application and associated manure storage capacity on phosphorus (P) losses at both field and watershed scales over an 11-yr period, using long-term observed data and an upgraded, variable-source water quality model called Topo-SWAT. At the field level, despite variation in location and crop management, manure applications throughout fall and winter increased annual total P losses by 12 to 16% and dissolved P by 19 to 40% as compared with spring. Among all field-level scenarios, total P loss was substantially reduced through better site targeting (by 48-64%), improving winter soil cover (by 25-46%), and reducing manure application rates (by 1-23%). At the watershed level, a scenario simulating 12 mo of manure storage (all watershed manure applied in spring) reduced dissolved P loss by 5% and total P loss by 2% but resulted in greater P concentrations peaks compared with scenarios simulating 6 mo (fall-spring application) or 3 mo storage (four-season application). Watershed-level impacts are complicated by aggregate effects, both spatial and temporal, of manure storage capacity on variables such as manure application rate and timing, and complexities of field and management. This comparison of the consequences of different manure storage capacities demonstrated a tradeoff between reducing annual P loss through a few high-concentration runoff events and increasing the frequency of low peaks but also increasing the annual loss.


Assuntos
Esterco , Fósforo/análise , Solo , Agricultura , Estações do Ano , Movimentos da Água
20.
J Environ Manage ; 184(Pt 2): 289-296, 2016 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-27729178

RESUMO

Animal manure application to agricultural land provides beneficial organic matter and nutrients but can spread harmful contaminants to the environment. Contamination of fresh produce, surface water and shallow groundwater with the manure-borne pollutants can be a critical concern. Leaching and persistence of nitrogen, microorganisms (bacteriophage, E. coli, and Enterococcus) and a group of steroid hormone (estrogens) were investigated after injection of swine slurry into either intact (structured) or disturbed (homogeneous repacked) soil. The slurry was injected into hexaplicate soil columns at a rate of 50 t ha-1 and followed with four irrigation events: 3.5-h period at 10 mm h-1 after 1, 2, 3, and 4 weeks. The disturbed columns delayed the leaching of a conservative tracer and microorganisms in the first irrigation event compared to the intact columns due to the effect of disturbed macropore flow paths. The slurry constituents that ended up in or near the macropore flow paths of the intact soil were presumably washed out relatively quickly in the first event. For the last three events the intact soil leached fewer microorganisms than the disturbed soil due to the bypassing effect of water through the macropore flow path in the intact soil. Estrogen leached from the intact soil in the first event only, but for the disturbed soil it was detected in the leachates of last two events also. Leaching from the later events was attributed to higher colloid transport from the disturbed soils. In contrast, NO3-N leaching from the intact soil was higher for all events except the first event, probably due to a lower nitrification rate in the disturbed soil. A week after the last irrigation event, the redistribution of all slurry constituents except NO3-N in most of the sections of the soil column was higher for the disturbed soil. Total recovery of E. coli was significantly higher from the disturbed soil and total leaching of mineral nitrogen was significantly lower from the disturbed soil. Results demonstrate how manure-borne constituents injected into undisturbed soil columns respond more as expected in the field, in terms of leaching and persistence, than do the same constituents injected into typically constructed columns of disturbed soil.


Assuntos
Esterco , Microbiologia do Solo , Poluentes do Solo/análise , Solo/química , Agricultura/métodos , Animais , Carbono/análise , Coloides/química , Enterococcus , Escherichia coli , Estrogênios/análise , Água Subterrânea , Esterco/análise , Esterco/microbiologia , Nitrogênio/análise , Fagos de Salmonella , Suínos , Poluentes Químicos da Água/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...