Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros










Intervalo de ano de publicação
1.
Antibiotics (Basel) ; 10(3)2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33801939

RESUMO

Rapid antibiotic susceptibility testing (AST) could play a major role in fighting multidrug-resistant bacteria. Recently, it was discovered that all living organisms oscillate in the range of nanometers and that these oscillations, referred to as nanomotion, stop as soon the organism dies. This finding led to the development of rapid AST techniques based on the monitoring of these oscillations upon exposure to antibiotics. In this review, we explain the working principle of this novel technique, compare the method with current ASTs, explore its application and give some advice about its implementation. As an illustrative example, we present the application of the technique to the slowly growing and pathogenic Bordetella pertussis bacteria.

2.
Front Chem ; 8: 605307, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33490037

RESUMO

The development of drug carriers based in lipid nanoparticles (LNPs) aims toward the synthesis of non-toxic multifunctional nanovehicles that can bypass the immune system and allow specific site targeting, controlled release and complete degradation of the carrier components. Among label free techniques, Surface Plasmon Resonance (SPR) biosensing is a versatile tool to study LNPs in the field of nanotherapeutics research. SPR, widely used for the analysis of molecular interactions, is based on the immobilization of one of the interacting partners to the sensor surface, which can be easily achieved in the case of LNPs by hydrophobic attachment onto commercial lipid- capture sensor chips. In the last years SPR technology has emerged as an interesting strategy for studying molecular aspects of drug delivery that determines the efficacy of the nanotherapeutical such as LNPs' interactions with biological targets, with serum proteins and with tumor extracelullar matrix. Moreover, SPR has contributed to the obtention and characterization of LNPs, gathering information about the interplay between components of the formulations, their response to organic molecules and, more recently, the quantification and molecular characterization of exosomes. By the combination of available sensor platforms, assay quickness and straight forward platform adaptation for new carrier systems, SPR is becoming a high throughput technique for LNPs' characterization and analysis.

3.
ACS Infect Dis ; 5(11): 1813-1819, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31538468

RESUMO

trans-Sialidase and cruzipain are important virulence factors from Trypanosoma cruzi, the etiological agent of Chagas disease, that have highly antigenic domains in their structure and were reported as potential tools for diagnosis of the illness. The aim of the present study is to assess the possibility of using cruzipain and the catalytic domain of trans-sialidase in a Surface Plasmon Resonance-based immunosensor for the diagnosis of chronic Chagas disease. Immunoassays carried out with canine sera verified that cruzipain allows the detection of anti-Trypanosoma cruzi antibodies whereas recombinant trans-sialidase did not yield specific detections, due to the high dilutions of serum used in the immunoassays that hinder the possibility to sense the specific low titer antibodies. The developed cruzipain-based biosensor, whose price per assay is comparable to a commercial enzyme-linked immunosorbent assay (ELISA), was successfully applied for the rapid quantification of specific antibodies against Trypanosoma cruzi in fresh human sera showing an excellent agreement with ELISA.


Assuntos
Anticorpos Antiprotozoários/sangue , Doença de Chagas/diagnóstico , Doença de Chagas/veterinária , Ensaio de Imunoadsorção Enzimática/métodos , Trypanosoma cruzi/isolamento & purificação , Animais , Doença de Chagas/sangue , Doença de Chagas/parasitologia , Cisteína Endopeptidases/análise , Cisteína Endopeptidases/genética , Cisteína Endopeptidases/imunologia , Doenças do Cão/sangue , Doenças do Cão/diagnóstico , Doenças do Cão/parasitologia , Cães , Glicoproteínas/análise , Glicoproteínas/genética , Glicoproteínas/imunologia , Humanos , Neuraminidase/análise , Neuraminidase/genética , Neuraminidase/imunologia , Proteínas de Protozoários/análise , Proteínas de Protozoários/genética , Proteínas de Protozoários/imunologia , Trypanosoma cruzi/genética , Trypanosoma cruzi/imunologia , Fatores de Virulência/sangue , Fatores de Virulência/genética , Fatores de Virulência/imunologia
4.
Colloids Surf B Biointerfaces ; 164: 144-154, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29413591

RESUMO

Medical device-related infections represent a major healthcare complication, resulting in potential risks for the patient. Antimicrobial materials comprise an attractive strategy against bacterial colonization and biofilm proliferation. However, in most cases these materials are only bacteriostatic or bactericidal, and consequently they must be used in combination with other antimicrobials in order to reach the eradication condition (no viable microorganisms). In this study, a straightforward and robust antibacterial coating based on Phosphotungstate Ormosil doped with core-shell (SiO2@TiO2) was developed using sol-gel process, chemical tempering, and Ag nanoparticle photoassisted synthesis (POrs-CS-Ag). The coating was characterized by X-ray Fluorescence Spectroscopy (XRF), Field Emission Scanning Electron Microscopy (FE-SEM), Atomic Force Microscopy (AFM) and X-ray Photoelectron Microscopy (XPS). The silver free coating displays low antibacterial activity against Staphylococcus aureus and Pseudomonas aeruginosa, in opposition to the silver loaded ones, which are able to completely eradicate these strains. Moreover, the antimicrobial activity of these substrates remains high until three reutilization cycles, which make them a promising strategy to develop self-sterilizing materials, such as POrs-CS-Ag-impregnated fabric, POrs-CS-Ag coated indwelling metals and polymers, among other materials.


Assuntos
Luz , Nanopartículas Metálicas/química , Siloxanas/farmacologia , Prata/química , Esterilização , Antibacterianos/farmacologia , Aderência Bacteriana/efeitos dos fármacos , Nanopartículas Metálicas/ultraestrutura , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos , Microscopia de Força Atômica , Espectroscopia Fotoeletrônica , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/crescimento & desenvolvimento , Espectrofotometria Ultravioleta , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/crescimento & desenvolvimento , Propriedades de Superfície
5.
Small ; 14(4)2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29205867

RESUMO

Infectious diseases are caused by pathogenic microorganisms and are often severe. Time to fully characterize an infectious agent after sampling and to find the right antibiotic and dose are important factors in the overall success of a patient's treatment. Previous results suggest that a nanomotion detection method could be a convenient tool for reducing antibiotic sensitivity characterization time to several hours. Here, the application of the method for slow-growing bacteria is demonstrated, taking Bordetella pertussis strains as a model. A low-cost nanomotion device is able to characterize B. pertussis sensitivity against specific antibiotics within several hours, instead of days, as it is still the case with conventional growth-based techniques. It can discriminate between resistant and susceptible B. pertussis strains, based on the changes of the sensor's signal before and after the antibiotic addition. Furthermore, minimum inhibitory and bactericidal concentrations of clinically applied antibiotics are compared using both techniques and the suggested similarity is discussed.


Assuntos
Antibacterianos/farmacologia , Bordetella pertussis/efeitos dos fármacos , Resistência Microbiana a Medicamentos , Humanos , Testes de Sensibilidade Microbiana
6.
PLoS One ; 11(3): e0150185, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26934726

RESUMO

Total antigens from Leishmania braziliensis promastigotes, solubilized with sodium cholate (dsLp), were formulated within ultradeformable nanovesicles (dsLp-ultradeformable archaeosomes, (dsLp-UDA), and dsLp-ultradeformable liposomes (dsLp-UDL)) and topically administered to Balb/c mice. Ultradeformable nanovesicles can penetrate the intact stratum corneum up to the viable epidermis, with no aid of classical permeation enhancers that can damage the barrier function of the skin. Briefly, 100 nm unilamellar dsLp-UDA (soybean phosphatidylcholine: Halorubrum tebenquichense total polar lipids (TPL): sodium cholate, 3:3:1 w:w) of -31.45 mV Z potential, containing 4.84 ± 0.53% w/w protein/lipid dsLp, 235 KPa Young modulus were prepared. In vitro, dsLp-UDA was extensively taken up by J774A1 and bone marrow derive cells, and the only that induced an immediate secretion of IL-6, IL-12p40 and TNF-α, followed by IL-1ß, by J774A1 cells. Such extensive uptake is a key feature of UDA ascribed to the highly negatively charged archaeolipids of the TPL, which are recognized by a receptor specialized in uptake and not involved in downstream signaling. Despite dsLp alone was also immunostimulatory on J774A1 cells, applied twice a week on consecutive days along 7 weeks on Balb/c mice, it raised no measurable response unless associated to UDL or UDA. The highest systemic response, IgGa2 mediated, 1 log lower than im dsLp Al2O3, was elicited by dsLp-UDA. Such findings suggest that in vivo, UDL and UDA acted as penetration enhancers for dsLp, but only dsLp-UDA, owed to its pronounced uptake by APC, succeeded as topical adjuvants. The actual TPL composition, fully made of sn2,3 ether linked saturated archaeolipids, gives the UDA bilayer resistance against chemical, physical and enzymatic attacks that destroy ordinary phospholipids bilayers. Together, these properties make UDA a promising platform for topical drug targeted delivery and vaccination, that may be of help for countries with a deficient healthcare system.


Assuntos
Antígenos de Protozoários/imunologia , Leishmania braziliensis/imunologia , Leishmaniose Cutânea/prevenção & controle , Vacinas Protozoárias/administração & dosagem , Vacinação/métodos , Administração Tópica , Animais , Linhagem Celular , Sobrevivência Celular , Módulo de Elasticidade , Halorubrum/química , Humanos , Leishmaniose Cutânea/parasitologia , Lipossomos , Lipídeos de Membrana/química , Camundongos Endogâmicos BALB C
7.
Nanoscale ; 4(2): 531-40, 2012 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-22127420

RESUMO

Heptamethinecyanine J-aggregates display sharp, intense fluorescence emission making them attractive candidates for developing a variety of chem-bio-sensing applications. They have been immobilized on planar thiol-covered Au surfaces and thiol-capped Au nanoparticles by weak molecular interactions. In this work the self-assembly of novel thiolated cyanine (CNN) on Au(111) and citrate-capped AuNPs from solutions containing monomers and J-aggregates has been studied by using STM, XPS, PM-IRRAS, electrochemical techniques and Raman spectroscopy. Data show that CNN species adsorb on the Au surfaces by forming thiolate-Au bonds. We found that the J-aggregates are preferentially adsorbed on the Au(111) surface directly from the solution while adsorbed CNN monomers cannot organize into aggregates on the substrate surface. These results indicate that the CNN-Au interaction is not able to disorganize the large J-aggregates stabilized by π-π stacking to optimize the S-Au binding site but it is strong enough to hinder the π-π stacking when CNNs are chemisorbed as monomers. The optical properties of the J-aggregates remain active after adsorption. The possibility of covalently bonding CNN J-aggregates to Au planar surfaces and Au nanoparticles controlling the J-aggregate/Au distance opens a new path regarding their improved stability and the wide range of biological applications of both CNN and AuNP biocompatible systems.


Assuntos
Cianetos/química , Ouro/química , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Compostos de Sulfidrila/química , Substâncias Macromoleculares/química , Teste de Materiais , Conformação Molecular , Tamanho da Partícula , Propriedades de Superfície
8.
Langmuir ; 25(22): 12945-53, 2009 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-19831352

RESUMO

A comparative study on the adsorption of buthanedithiol (BDT), hexanedithiol (HDT), and nonanedithiol (NDT) on Au(111) from ethanolic and n-hexane solutions and two different preparation procedures is presented. SAM characterization is based on reflection-absorption infrared spectroscopy, electrochemistry, X-ray photoelectron spectroscopy, and time of flight direct recoil spectroscopy. Results indicate that one can obtain a standing-up phase of dithiols and that the amount of the precursor lying-down phase decreases from BDT to NDT, irrespective of the solvent and self-assembly conditions. A good ordering of the hydrocarbon chains in the standing-up configuration is observed for HDT and NDT when the system is prepared in degassed n-hexane with all operations carried out in the dark. Disulfide bridges at the free SH terminal groups are formed for HDT and to a lesser extent for NDT prepared in ethanol in the presence of oxygen, but we found no evidence of ordered multilayer formation in our experiments. No disulfides were observed for BDT that only forms the lying-down phase. Our results demonstrate the key role of the chain length and the procedure (solvent nature and oxygen presence) in controlling the surface structure and chemistry of SAMs dithiols on Au(111).

9.
J Phys Chem B ; 110(11): 5586-94, 2006 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-16539501

RESUMO

The surface structure of dodecanethiolate self-assembled monolayers (SAMs) on Au(111) surfaces, formed from the liquid phase, have been studied by grazing incidence X-ray diffraction (GIXRD), scanning tunneling microscopy (STM), and electrochemical techniques. STM images show that the surface structure consists of (square root 3 x square root 3)-R30 degrees domains with only a few domains of the c(4 x 2) lattice. The best fitting of GIXRD data for the (square root 3 x square root 3)-R30 degrees lattice is obtained with alkanethiolate adsorption at the top sites, although good fittings are also obtained for the fcc and hcp hollow sites. On the basis of this observation, STM data, electrochemical measurements, and previously reported data, we propose a two-site model that implies the formation of incoherent domains of alkanethiolate molecules at top and fcc hollow sites. This model largely improves the fitting of the GIXRD data with respect to those observed for single adsorption sites and, also, for the other possible two-site combinations. The presence of alkanethiolate molecules adsorbed at the less favorable top sites could result from the adsorption pathway that involves an initial physisorption step which, for steric reasons, takes place at on top sites. Once the molecules are chemisorbed, the presence of energy barriers for alkanethiolate surface diffusion, arising mostly from chain-chain interactions, "freezes" some of them at the on top sites, hindering their movement toward fcc hollow sites. By considering the length of the hydrocarbon chain and the adsorption time, the two-site model could be a tool to explain most of the controversial results on this matter reported in the literature.

10.
Langmuir ; 21(17): 7907-11, 2005 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-16089399

RESUMO

A new biomimetic nanostructured electrocatalyst comprised of a self-assembled monolayer (SAM) of flavin covalently attached to Au by reaction of methylformylisoalloxazine with chemisorbed cysteamine is introduced. Examinations by Fourier transform infrared spectroscopy and scanning tunneling microscopy (STM) show that the flavin molecules are oriented perpendicular to the surface with a 2 nm separation between flavin molecules. As a result of the contrast observed in the STM profiles between areas only covered by unreacted cysteamine and those covered by flavin-cysteamine moieties, it can be seen that the flavin molecules rise 0.7 nm above the chemisorbed cysteamines. The SAM flavin electrocatalyst undergoes fast electron transfer with the underlying Au and shows activity toward the oxidation of enzymatically active beta-NADH at pH 7 and very low potential (-0.2 V vs Ag/AgCl), a requirement for use in an enzymatic biofuel cell, and a 100-fold increase in activity with respect to the collisional reaction in solution.


Assuntos
Biomimética , Flavinas/química , Ouro/química , Membranas Artificiais , Catálise , Cisteamina/química , Eletroquímica , Microscopia de Tunelamento , Estrutura Molecular , NAD/química , Nanoestruturas/química , Oxirredução , Sensibilidade e Especificidade , Espectroscopia de Infravermelho com Transformada de Fourier , Propriedades de Superfície
11.
Buenos Aires; Nova; 1a. ed; 1961. 154 p. ^e21 cm.(Biblioteca Nova de Educación).
Monografia em Espanhol | LILACS-Express | BINACIS | ID: biblio-1197352
12.
Buenos Aires; Nova; 1a. ed; 1961. 154 p. 21 cm.(Biblioteca Nova de Educación). (71930).
Monografia em Espanhol | BINACIS | ID: bin-71930
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...