Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Front Cell Dev Biol ; 12: 1352233, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38903533

RESUMO

Physical changes in the tumor microenvironment, such as increased stiffness, regulate cancer hallmarks and play an essential role in gene expression, cell morphology, migration, and malignancy. However, the response of cancer cells to stiffness is not homogeneous and varies depending on the cell type and its mechanosensitivity. In this study, we investigated the differential responses of cervical (HeLa) and prostate (PC-3) cancer cell lines, as well as non-tumoral cell lines (HEK293 and HPrEC), to stiffness using polyacrylamide hydrogels mimicking normal and tumoral tissues. We analyzed cell morphology, migration, and the expression of neuropilin 1 (NRP1), a receptor involved in angiogenesis, cell migration, and extracellular matrix remodeling, known to be associated with cancer progression and poor prognosis. Our findings reveal that NRP1 expression increases on substrates mimicking the high stiffness characteristic of tumoral tissue in the non-tumoral cell lines HPrEC and HEK293. Conversely, in tumoral PC-3 cells, stiffness resembling normal prostate tissue induces an earlier and more sustained expression of NRP1. Furthermore, we observed that stiffness influences cell spreading, pseudopodia formation, and the mode of cell protrusion during migration. Soft substrates predominantly trigger bleb cell protrusion, while pseudopodia protrusions increase on substrates mimicking normal and tumor-like stiffnesses in HPrEC cells compared to PC-3 cells. Stiffer substrates also enhance the percentage of migratory cells, as well as their velocity and total displacement, in both non-tumoral and tumoral prostate cells. However, they only improve the persistence of migration in tumoral PC-3 cells. Moreover, we found that NRP1 co-localizes with actin, and its suppression impairs tumoral PC-3 spreading while decreasing pseudopodia protrusion mode. Our results suggest that the modulation of NRP1 expression by the stiffness can be a feedback loop to promote malignancy in non-tumoral and cancer cells, contingent upon the mechanosensitivity of the cells.

2.
Cells Dev ; 171: 203800, 2022 09.
Artigo em Inglês | MEDLINE | ID: mdl-35717026

RESUMO

Semaphorin 3A (Sema3a) is a chemotropic protein that acts as a neuronal guidance cue and plays a major role in dorsal root ganglion (DRG) sensory neurons projection during embryo development. The present study evaluated the impact of stiffness in the repulsive response of DRG neurons to Sema3a when cultured over substrates of variable stiffness. Stiffness modified DRG neurons morphology and regulated their response to Sema3a, reducing the collapse of growth cones when they were cultured on softer substrates. Sema3a receptors expression was also regulated by stiffness, neuropilin-1 was overexpressed and plexin A4 mRNA was downregulated in stiffer substrates. Cytoskeleton distribution was also modified by stiffness. In softer substrates, ßIII-tubulin and actin co-localized up to the leading edge of the growth cones, and as the substrate became stiffer, ßIII-tubulin was confined to the transition and peripheral domains of the growth cone. Moreover, a decrease in the α-actinin adaptor protein was also observed in softer substrates. Our results show that substrate stiffness plays an important role in regulating the collapse response to Sema3a and that the modulation of cytoskeleton distribution and Sema3a receptors expression are related to the differential collapse responses of the growth cones.


Assuntos
Gânglios Espinais , Semaforina-3A , Gânglios Espinais/metabolismo , Proteínas do Tecido Nervoso/genética , Neurônios/metabolismo , Neuropilina-1/genética , Semaforina-3A/metabolismo , Tubulina (Proteína)/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA