Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Int Arch Occup Environ Health ; 95(8): 1785-1796, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35551477

RESUMO

PURPOSE: Exposures related to beryllium (Be) are an enduring concern among workers in the nuclear weapons and other high-tech industries, calling for regular and rigorous biological monitoring. Conventional biomonitoring of Be in urine is not informative of cumulative exposure nor health outcomes. Biomarkers of exposure to Be based on non-invasive biomonitoring could help refine disease risk assessment. In a cohort of workers with Be exposure, we employed blood plasma extracellular vesicles (EVs) to discover novel biomarkers of exposure to Be. METHODS: EVs were isolated from plasma using size-exclusion chromatography and subjected to mass spectrometry-based proteomics. A protein-based classifier was developed using LASSO regression and validated by ELISA. RESULTS: We discovered a dual biomarker signature comprising zymogen granule protein 16B and putative protein FAM10A4 that differentiated between Be-exposed and -unexposed subjects. ELISA-based quantification of the biomarkers in an independent cohort of samples confirmed higher expression of the signature in the Be-exposed group, displaying high predictive accuracy (AUROC = 0.919). Furthermore, the biomarkers efficiently discriminated high- and low-exposure groups (AUROC = 0.749). CONCLUSIONS: This is the first report of EV biomarkers associated with Be exposure and exposure levels. The biomarkers could be implemented in resource-limited settings for Be exposure assessment.


Assuntos
Berílio , Vesículas Extracelulares , Berílio/metabolismo , Biomarcadores , Vesículas Extracelulares/química , Vesículas Extracelulares/metabolismo , Humanos , Espectrometria de Massas , Proteômica/métodos
2.
Mar Drugs ; 17(12)2019 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-31795148

RESUMO

Rocas Atoll is a unique environment in the equatorial Atlantic Ocean, hosting a large number of endemic species, however, studies on the chemical diversity emerging from this biota are rather scarce. Therefore, the present work aims to assess the metabolomic diversity and pharmacological potential of the microbiota from Rocas Atoll. A total of 76 bacteria were isolated and cultured in liquid culture media to obtain crude extracts. About one third (34%) of these extracts were recognized as cytotoxic against human colon adenocarcinoma HCT-116 cell line. 16S rRNA gene sequencing analyses revealed that the bacteria producing cytotoxic extracts were mainly from the Actinobacteria phylum, including Streptomyces, Salinispora, Nocardiopsis, and Brevibacterium genera, and in a smaller proportion from Firmicutes phylum (Bacillus). The search in the spectral library in GNPS (Global Natural Products Social Molecular Networking) unveiled a high chemodiversity being produced by these bacteria, including rifamycins, antimycins, desferrioxamines, ferrioxamines, surfactins, surugamides, staurosporines, and saliniketals, along with several unidentified compounds. Using an original approach, molecular networking successfully highlighted groups of compounds responsible for the cytotoxicity of crude extracts. Application of DEREPLICATOR+ (GNPS) allowed the annotation of macrolide novonestimycin derivatives as the cytotoxic compounds existing in the extracts produced by Streptomyces BRB-298 and BRB-302. Overall, these results highlighted the pharmacological potential of bacteria from this singular atoll.


Assuntos
Actinobacteria/química , Actinobacteria/metabolismo , Produtos Biológicos/farmacologia , Actinobacteria/isolamento & purificação , Oceano Atlântico , Células HCT116 , Humanos , Estrutura Molecular , Filogenia , Streptomyces/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...