Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Dosim ; 49(3): 206-214, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38290896

RESUMO

Spatially fractionated radiotherapy (SFRT) techniques have undergone transformative evolution, encompassing physical GRID therapy, MLC-based grids, virtual TOMO GRIDs, and 3-dimensional high-dose lattices. Historical roots trace back to Alban Köhler's pioneering Spatially fractionated grid therapy (SFGRT), utilizing physical grids for dose modulation. Technological innovations introduced multi-leaf collimators (MLCs), enabling adaptable spatial fractionation and a shift to the broader term "SFRT." Physics and dosimetry-based studies have demonstrated the feasibility of computerized treatment planning and identified the potential to minimize the peripheral dose while using such high-dose therapy. Meanwhile, 3-dimensional high-dose lattices showed enhanced precision. The meticulous placement of high-dose volumetric spheres enables a reduction in the volume of high-dose spills. Advancements in 3-dimensional lattices through intensity-modulated radiotherapy and volumetric modulated arc therapy (VMAT) techniques offer enhanced therapeutic options. A database of SFRT studies identified 723 articles. This review shows the trajectory of SFRT from traditional grids to MLC-based approaches, virtual TOMO GRIDs, and innovative 3-dimensional lattices. Technological innovations, dosimetric advancements, and clinical feasibility have underscored the continual progress in refining spatially fractionated radiotherapy. The integration of MLCs and lattice techniques has demonstrated improved therapeutic outcomes, solidifying their relevance in modern radiation therapy protocols. Research has yet to reveal a clear correlation between treatment outcomes and dosimetric parameters. Additional investigations are necessary to assess the impact of various dosimetric parameters, such as EUD, peak-to-valley ratio (PVDR), D5%, D10%, D20%, D90%, etc., on the effectiveness of treatments.


Assuntos
Fracionamento da Dose de Radiação , Humanos , Planejamento da Radioterapia Assistida por Computador/métodos , Radiometria , Radioterapia de Intensidade Modulada/métodos , Dosagem Radioterapêutica
2.
Radiol Med ; 124(5): 400-407, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30569258

RESUMO

PURPOSE: To compare the dose calculation accuracy of plans done on a CT density-assigned MR image set for hypofractionated stereotactic radiotherapy (HSRT) using volumetric modulated radiation therapy containing non-coplanar beams. METHODS: Eighteen patients diagnosed with schwannoma treated with HSRT were selected retrospectively. These patients underwent planning CT (pCT) for radiation therapy (RT) and contrast-enhanced three-dimensional fast-spoiled gradient-echo image (3D FSPGR) to assist tumor delineation. CTplan is plan done on pCT. The structures body, bone, and air are contoured exclusively on MR image and assigned Hounsfield units of 25, + 1000, and - 1000, respectively. This is termed as MRCT. After registration, original plans from pCT are pasted on the MRCT. Dose calculation is done in two ways: (1) with preset MU values (DDC) and (2) with optimization (OPT_DC). Conformity indices and Dmax and D0.5cc of brainstem, gamma agreement index and correlation coefficient are analyzed. ANOVA test is carried out to find the significance of difference between plans. RESULTS: The mean deviations of Dmax and D0.5cc of brainstem for CTplan versus DDC are 2.49% and 1.45% respectively. The mean deviations of Dmax and D0.5cc of brainstem for CTplan versus OPT_DC are - 1.56% and - 1.97%, respectively. Mean deviations of conformity index for DDC and OPT_DC are 0.84% and 0.89%, respectively. No significant difference was found with ANOVA test. CONCLUSION: Results show that there is no difference between plans generated with actual CT data and MRCT data. Thus MR scans could be employed for radiation planning provided the verification image is available. This gives us confidence to reduce treatment margins where image registration process is avoided.


Assuntos
Imageamento por Ressonância Magnética/métodos , Neurilemoma/diagnóstico por imagem , Neurilemoma/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Idoso , Meios de Contraste , Feminino , Humanos , Imageamento Tridimensional , Masculino , Pessoa de Meia-Idade , Hipofracionamento da Dose de Radiação , Dosagem Radioterapêutica , Estudos Retrospectivos , Tomografia Computadorizada por Raios X
3.
Asian Pac J Cancer Prev ; 16(4): 1633-6, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25743844

RESUMO

BACKGROUND: The advantages of Rapid Arc plans versus Intensity modulated radiotherapy plans for Carcinoma left breast were analyzed. MATERIALS AND METHODS: In this study 20 Post mastectomy carcinoma left breast patients were analyzed. Both Intensity modulated Radiotherapy and Rapid Arc plans were generated for these patients. IMRT plans with 7 beams in an arc fashion and VMAT plans with two semi arcs were made to achieve 95% dose coverage to 100% volume. The plans were evaluated using Dose volume Histograms. RESULTS: The mean Conformity and Homogeneity index in VMAT is found to be 1.05 and 0.065 respectively whereas in IMRT it was 1.07 and 0.069. The 20% volume of Heart received a mean dose of 960cGy in VMAT and 1300cGy in IMRT. The mean dose was 1236cGy in VMAT and 1870cGy in IMRT. The ipsilateral Lung received 3395cGy to 5% volume and 1840cGy to 20% volume on an average and the mean dose was 1205cGy in VMAT, while the same were found to be 3525cGy, 2012cGy and 1435cGy respectively in IMRT. The Contralateral Lung received a mean dose of 505cGy in VMAT and 553cGy in IMRT. The mean Monitor units in VMAT were 512MU and 1170MU in IMRT. The NTID in VMAT is 108.8 x 105 Gycm3 and 110.1 x 105 Gycm3 in IMRT. CONCLUSIONS: The target coverage, homogeneity and Conformity index were better in VMAT plans. The Ipsilateral Lung and heart dose were very less in VMAT plans. The Contralateral Lung dose and the Normal Tissue Integral Dose were also lesser in VMAT plans however the difference is not very appreciable. The MU in VMAT plans is almost 50% that of the IMRT plans which results in the reduction of treatment time. On the whole VMAT proves to be a better modality for treating Ca. Left Breast Patients.


Assuntos
Neoplasias da Mama/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Radioterapia de Intensidade Modulada/métodos , Feminino , Humanos , Órgãos em Risco , Dosagem Radioterapêutica
4.
Technol Cancer Res Treat ; 12(3): 207-16, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23369151

RESUMO

The 4 MV photon beam offers equal build-up region behavior like Co-60 beam and it plays a major role in head and neck and pediatric radiotherapy. In this study an attempt is made to study the head scatter factor (SC) for 4 MV photon beam using locally designed PMMA and Brass miniphantoms. The SC is measured in combination of PMMA miniphantom with 0.6 cc chamber and Brass miniphantom with 0.6 cc and 0.13 cc chambers. The measured SC is compared with the literature data and it agrees within ± 1.98%. The study reveals that either 0.13 cc or 0.6 cc chamber with PMMA or Brass phantom materials can be used for SC measurements in a 4 MV photon beam. The variation of SSD does not alter the head scatter factor. The collimator exchange effect is found to be within 1, and it is less than that of other linear accelerators. It is also found that the presence of internal wedge has significant contribution to head scatter factor. The Phantom scatter factor is also calculated and it agrees within ±1% with published data.


Assuntos
Radioterapia de Alta Energia/métodos , Espalhamento de Radiação , Humanos , Imagens de Fantasmas , Dosagem Radioterapêutica , Radioterapia de Alta Energia/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA