Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(40): 14983-14993, 2023 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-37774105

RESUMO

Dissolved organic matter (DOM) contributes to forest C cycling. We assessed temporal variability, sources, and transformations of DOM during four years in a tropical montane forest with the help of stable C isotope ratios (δ13C values). We measured δ13C values of DOM in rainfall (RF), throughfall (TF), stemflow (SF), litter leachate (LL), soil solutions at the 0.15 and 0.30 m depths (SS15, SS30), and streamflow (ST) with TOC-IRMS. The δ13C values of DOM did not vary seasonally. We detected an event with a high δ13C value likely attributable to black carbon from local pasture fires. The mean δ13C values of DOM outside the event decreased in the order, RF (-26.0 ± 1.3‰) > TF (-28.7 ± 0.3‰) > SF (-29.2 ± 0.2‰) > LL (-29.6 ± 0.2‰) because of increasing leaching of C-isotopically light compounds. The higher δ13C values of DOM in SS15 (-27.8 ± 1.0‰), SS30 (-27.6 ± 1.1‰), and ST (-27.9 ± 1.1‰) than in the above-ground solutions suggested that roots and root exudates are major belowground DOM sources. Although in DOM the C/N ratios correlated with the δ13C values when all solutions were considered, this was not the case for SS15, SS30, and ST alone. Thus, the δ13C values of DOM provide an additional tool to assess the sources and turnover of DOM.

2.
New Phytol ; 232(2): 551-566, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34228829

RESUMO

Community trait assembly in highly diverse tropical rainforests is still poorly understood. Based on more than a decade of field measurements in a biodiversity hotspot of southern Ecuador, we implemented plant trait variation and improved soil organic matter dynamics in a widely used dynamic vegetation model (the Lund-Potsdam-Jena General Ecosystem Simulator, LPJ-GUESS) to explore the main drivers of community assembly along an elevational gradient. In the model used here (LPJ-GUESS-NTD, where NTD stands for nutrient-trait dynamics), each plant individual can possess different trait combinations, and the community trait composition emerges via ecological sorting. Further model developments include plant growth limitation by phosphorous (P) and mycorrhizal nutrient uptake. The new model version reproduced the main observed community trait shift and related vegetation processes along the elevational gradient, but only if nutrient limitations to plant growth were activated. In turn, when traits were fixed, low productivity communities emerged due to reduced nutrient-use efficiency. Mycorrhizal nutrient uptake, when deactivated, reduced net primary production (NPP) by 61-72% along the gradient. Our results strongly suggest that the elevational temperature gradient drives community assembly and ecosystem functioning indirectly through its effect on soil nutrient dynamics and vegetation traits. This illustrates the importance of considering these processes to yield realistic model predictions.


Assuntos
Ecossistema , Florestas , Biodiversidade , Nutrientes , Plantas , Solo
3.
Glob Chang Biol ; 26(12): 6989-7005, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32939921

RESUMO

The response of organic carbon (C) concentrations in ecosystem solutions to environmental change affects the release of dissolved organic matter (DOM) from forests to surface and groundwaters. We determined the total organic C (TOC) concentrations (filtered <1-7 µm) and the ratios of TOC/dissolved organic nitrogen (DON) concentrations, electrical conductivity (EC), and pH in all major ecosystem solutions of a tropical montane forest from 1998 to 2013. The forest was located on the rim of the Amazon basin in Ecuador and experienced increasing numbers of days with >25°C, decreasing soil moisture, and rising nitrogen (N) deposition from the atmosphere during the study period. In rainfall, throughfall, mineral soil solutions (at the 0.15- and 0.30-m depths), and streamflow, TOC concentrations and fluxes decreased significantly from 1998 to 2013, while they increased in stemflow. TOC/DON ratios decreased significantly in rainfall, throughfall, soil solution at the 0.15-m depth, and streamflow. Based on Δ14 C values, the TOC in rainfall and mineral soil solutions was 1 year old and that of litter leachate was 10 years old. The pH in litter leachate decreased with time, that in mineral soil solutions increased, while those in the other ecosystem solutions did not change. Thus, reduced TOC solubility because of lower pH values cannot explain the negative trends in TOC concentrations in most ecosystem solutions. The increasing TOC concentrations and EC in stemflow pointed at an increased leaching of TOC and other ions from the bark. Our results suggest an accelerated degradation of DOM, particularly of young DOM, associated with the production of N-rich compounds simultaneously to changing climatic conditions and increasing N availability. Thus, environmental change increased the CO2 release to the atmosphere but reduced DOM export to surface and groundwater.


Assuntos
Ecossistema , Árvores , Carbono/análise , Equador , Florestas , Nitrogênio , Solo
4.
Oecologia ; 193(3): 731-748, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32737568

RESUMO

Gross rates of nitrogen (N) turnover inform about the total N release and consumption. We investigated how plant diversity affects gross N mineralization, microbial ammonium (NH4+) consumption and gross inorganic N immobilization in grasslands via isotopic pool dilution. The field experiment included 74 plots with 1-16 plant species and 1-4 plant functional groups (legumes, grasses, tall herbs, small herbs). We determined soil pH, shoot height, root, shoot and microbial biomass, and C and N concentrations in soil, microbial biomass, roots and shoots. Structural equation modeling (SEM) showed that increasing plant species richness significantly decreased gross N mineralization and microbial NH4+ consumption rates via increased root C:N ratios. Root C:N ratios increased because of the replacement of legumes (low C:N ratios) by small herbs (high C:N ratios) and an increasing shoot height, which was positively related with root C:N ratios, with increasing species richness. However, in our SEM remained an unexplained direct negative path from species richness to both N turnover rates. The presence of legumes increased gross N mineralization, microbial NH4+ consumption and gross inorganic N immobilization rates likely because of improved N supply by N2 fixation. The positive effect of small herbs on microbial NH4+ consumption and gross inorganic N immobilization could be attributed to their increased rhizodeposition, stimulating microbial growth. Our results demonstrate that increasing root C:N ratios with increasing species richness slow down the N cycle but also that there must be additional, still unidentified processes behind the species richness effect potentially including changed microbial community composition.


Assuntos
Compostos de Amônio , Nitrogênio , Biodiversidade , Biomassa , Pradaria , Solo
5.
Glob Chang Biol ; 26(4): 2403-2420, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31957121

RESUMO

Conversion of tropical forests is among the primary causes of global environmental change. The loss of their important environmental services has prompted calls to integrate ecosystem services (ES) in addition to socio-economic objectives in decision-making. To test the effect of accounting for both ES and socio-economic objectives in land-use decisions, we develop a new dynamic approach to model deforestation scenarios for tropical mountain forests. We integrate multi-objective optimization of land allocation with an innovative approach to consider uncertainty spaces for each objective. These uncertainty spaces account for potential variability among decision-makers, who may have different expectations about the future. When optimizing only socio-economic objectives, the model continues the past trend in deforestation (1975-2015) in the projected land-use allocation (2015-2070). Based on indicators for biomass production, carbon storage, climate and water regulation, and soil quality, we show that considering multiple ES in addition to the socio-economic objectives has heterogeneous effects on land-use allocation. It saves some natural forest if the natural forest share is below 38%, and can stop deforestation once the natural forest share drops below 10%. For landscapes with high shares of forest (38%-80% in our study), accounting for multiple ES under high uncertainty of their indicators may, however, accelerate deforestation. For such multifunctional landscapes, two main effects prevail: (a) accelerated expansion of diversified non-natural areas to elevate the levels of the indicators and (b) increased landscape diversification to maintain multiple ES, reducing the proportion of natural forest. Only when accounting for vascular plant species richness as an explicit objective in the optimization, deforestation was consistently reduced. Aiming for multifunctional landscapes may therefore conflict with the aim of reducing deforestation, which we can quantify here for the first time. Our findings are relevant for identifying types of landscapes where this conflict may arise and to better align respective policies.

6.
Glob Chang Biol ; 20(12): 3646-59, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24764217

RESUMO

Increased nitrogen (N) depositions expected in the future endanger the diversity and stability of ecosystems primarily limited by N, but also often co-limited by other nutrients like phosphorus (P). In this context a nutrient manipulation experiment (NUMEX) was set up in a tropical montane rainforest in southern Ecuador, an area identified as biodiversity hotspot. We examined impacts of elevated N and P availability on arbuscular mycorrhizal fungi (AMF), a group of obligate biotrophic plant symbionts with an important role in soil nutrient cycles. We tested the hypothesis that increased nutrient availability will reduce AMF abundance, reduce species richness and shift the AMF community toward lineages previously shown to be favored by fertilized conditions. NUMEX was designed as a full factorial randomized block design. Soil cores were taken after 2 years of nutrient additions in plots located at 2000 m above sea level. Roots were extracted and intraradical AMF abundance determined microscopically; the AMF community was analyzed by 454-pyrosequencing targeting the large subunit rDNA. We identified 74 operational taxonomic units (OTUs) with a large proportion of Diversisporales. N additions provoked a significant decrease in intraradical abundance, whereas AMF richness was reduced significantly by N and P additions, with the strongest effect in the combined treatment (39% fewer OTUs), mainly influencing rare species. We identified a differential effect on phylogenetic groups, with Diversisporales richness mainly reduced by N additions in contrast to Glomerales highly significantly affected solely by P. Regarding AMF community structure, we observed a compositional shift when analyzing presence/absence data following P additions. In conclusion, N and P additions in this ecosystem affect AMF abundance, but especially AMF species richness; these changes might influence plant community composition and productivity and by that various ecosystem processes.


Assuntos
Biodiversidade , Mudança Climática , Modelos Biológicos , Micorrizas/crescimento & desenvolvimento , Nitrogênio/análise , Fósforo/análise , Solo/química , Sequência de Bases , Equador , Previsões/métodos , Dados de Sequência Molecular , Micorrizas/genética , Raízes de Plantas/anatomia & histologia , Raízes de Plantas/microbiologia , RNA Ribossômico/genética , Análise de Sequência de DNA , Especificidade da Espécie
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...