Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Death Differ ; 28(5): 1579-1592, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33293647

RESUMO

The tendency of brain cells to undergo apoptosis in response to exogenous events varies across neural development, with apoptotic threshold dependent on proliferation state. Proliferative neural progenitors show a low threshold for apoptosis, while terminally differentiated neurons are relatively refractory. To define the mechanisms linking proliferation and apoptotic threshold, we examined the effect of conditionally deleting Bcl2l1, the gene that codes the antiapoptotic protein BCL-xL, in cerebellar granule neuron progenitors (CGNPs), and of co-deleting Bcl2l1 homologs, antiapoptotic Mcl-1, or pro-apoptotic Bax. We found that cerebella in conditional Bcl2l1-deleted (Bcl-xLcKO) mice were severely hypoplastic due to the increased apoptosis of CGNPs and their differentiated progeny, the cerebellar granule neurons (CGNs). Apoptosis was highest as Bcl-xLcKO CGNPs exited the cell cycle to initiate differentiation, with proliferating Bcl-xLcKO CGNPs relatively less affected. Despite the overall reduction in cerebellar growth, SHH-dependent proliferation was prolonged in Bcl-xLcKO mice, as more CGNPs remained proliferative in the second postnatal week. Co-deletion of Bax rescued the Bcl-xLcKO phenotype, while co-deletion of Mcl-1 enhanced the phenotype. These findings show that CGNPs require BCL-xL to regulate BAX-dependent apoptosis, and that this role can be partially compensated by MCL-1. Our data further show that BCL-xL expression regulates MCL-1 abundance in CGNPs, and suggest that excessive MCL-1 in Bcl-xLcKO mice prolongs CGNP proliferation by binding SUFU, resulting in increased SHH pathway activation. Accordingly, we propose that BCL-xL and MCL-1 interact with each other and with developmental mechanisms that regulate proliferation, to adjust the apoptotic threshold as CGNPs progress through postnatal neurogenesis to CGNs.


Assuntos
Neoplasias Cerebelares/genética , Proteína de Sequência 1 de Leucemia de Células Mieloides/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Animais , Proliferação de Células , Neoplasias Cerebelares/patologia , Humanos , Camundongos , Neurogênese , Transdução de Sinais
2.
Integr Comp Biol ; 54(5): 931-41, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-24920749

RESUMO

Reduced reproduction extends lifespan of females in many animals. To test the effects of reproduction on storage of macronutrients, we block reproductive output in the lubber grasshopper by injecting RNAi against the precursor to egg-yolk protein, vitellogenin, in early adulthood. Controls were injected with either buffer or RNAi against the major storage protein in the hemolymph, hexamerin-90. Vitellogenin RNAi greatly reduced both levels of mRNA for vitellogenin and ovarian growth, in comparison to both controls. Fat body mass was increased upon vitellogenin RNAi, but concentrations of the three hexameric storage proteins from the hemolymph were not. Surprisingly, hemolymph vitellogenin levels were increased upon vitellogenin RNAi. Total reproductive protein (hemolymph vitellogenin plus ovarian vitellin) was unchanged by vitellogenin RNAi, as reproductive protein was diverted to the hemolymph. Similarly, the increased lipid storage upon vitellogenin RNAi was largely attributable to the reduction in lipid in the ovary, due to decreased ovarian growth. A BLAST search revealed that the 515 bp sequence of vitellogenin used for RNAi had three 11 bp regions identical to the vitellogenin receptor of the cockroach Leucophaea maderae. This suggests that our treatment, in addition to reducing levels of vitellogenin transcript, may have also blocked transport of vitellogenin from the hemolymph to the ovary. This would be consistent with halted ovarian growth simultaneous with high levels of vitellogenin in the hemolymph. Nonetheless, the accumulation of vitellogenin, instead of hexameric storage proteins, is inconsistent with a simple model of the trade-off between reproduction and storage. This was observed in young females; future studies will address whether investment of proteins may shift to the soma as individuals age. Overall, our results suggest that blockage of reproduction in young grasshoppers redirects lipids to storage and reproductive proteins to the hemolymph.


Assuntos
Gafanhotos/fisiologia , Proteínas de Insetos/genética , Metabolismo dos Lipídeos , Interferência de RNA , Vitelogeninas/genética , Aminoácidos/metabolismo , Animais , Corpo Adiposo/crescimento & desenvolvimento , Corpo Adiposo/metabolismo , Feminino , Técnicas de Silenciamento de Genes , Gafanhotos/genética , Gafanhotos/crescimento & desenvolvimento , Hemolinfa/metabolismo , Proteínas de Insetos/metabolismo , Dados de Sequência Molecular , Ninfa/genética , Ninfa/crescimento & desenvolvimento , Ninfa/fisiologia , Ovário/crescimento & desenvolvimento , Ovário/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de DNA , Vitelogeninas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA