Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Pain Rep ; 9(5): e1169, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39139363

RESUMO

Introduction: Millions of people undergo surgical procedures each year with many developing postsurgical pain. Dynamic allodynia can arise when, for example, clothing brushing close to the surgical site elicits pain. The allodynia circuits that enable crosstalk between afferent tactile inputs and central pain circuits have been studied, but the peripheral tactile drive has not been explored. Objective: Investigate the innervation of the skin in the rat plantar hindpaw skin-muscle incision model. Results: Incision increased epidermal thickness and cell layers and reduced intraepidermal nerve fibre density, identified with PGP9.5 immunostaining. Strikingly, Collagen IV immunostaining revealed the development of dermal protrusions, oriented towards the incision site, that were reminiscent of the dermal papillae that exist in glabrous footpads. S100 immunostaining for lamellar Schwann cells revealed the presence of novel tactile corpuscles (S100-positive bulb) within incision-induced putative dermal papillae. The occurrence of these novel tactile corpuscles coincided with behavioural observations of dynamic allodynia. Tactile corpuscles require brain-derived neurotrophic factor- tropomyosin receptor kinase B (BDNF-TrkB) signalling to form during development, and an increase in BDNF-immunostaining intensity was observed close to the incision site. Local acute administration of TrkB-Fc, to block BDNF-TrkB signalling, reduced, by approximately 50%, both tactile corpuscle size (S100+ bulb area) and dynamic allodynia. Conclusion: Surgery induces the development of novel tactile corpuscles in the incision surround, in a BDNF-TrKB-dependent manner, that contributes to postsurgical tactile-evoked pain.

2.
Br J Anaesth ; 128(4): 718-733, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35074214

RESUMO

BACKGROUND: Postoperative pain is a common clinical problem that, in preclinical studies, has almost exclusively been studied in males. Altered C-fibre activity-dependent slowing (ADS) is a potential underlying mechanism, given it is altered after tissue inflammation and nerve injury, but this has not been explored post-incision. We therefore investigated the effect of hind-paw incision on C-fibre ADS in both sexes and the involvement of voltage-gated sodium channels (NaV) as they contribute to ADS. We also assessed mechanical and thermal sensitivity post-incision in both sexes. METHODS: Dorsal roots were isolated from hind-paw incision (2-4 days post-surgery) or naive (control) juvenile rats of both sexes. Compound action potential recordings were made to assess C-fibre ADS in response to ×40 stimuli at 2 and 10 Hz and repeated in the presence of 20 nM tetrodotoxin/vehicle. Data were quantified by the normalised change in latency (negative peak) and width (positive-to-positive peak) of the triphasic C-fibre response. Hind-paw mechanical withdrawal thresholds and thermal withdrawal latencies were measured pre- and post-incision. RESULTS: Incision facilitates C-fibre ADS in both sexes, with more pronounced facilitation in females. Tetrodotoxin induces sex- and injury-dependent changes in C-fibre ADS that were distinct between latency and width measures. Hind-paw incision induced comparable mechanical hypersensitivity in both sexes but less peak heat hypersensitivity in females. CONCLUSIONS: Hind-paw incision induces sex-dependent changes in C-fibre activity-dependent slowing, which likely contribute to the observed sex difference in peak thermal hypersensitivity. This may reflect sex- and incision-induced differences in functional expression of NaV channels that differs by C-fibre subtype.


Assuntos
Temperatura Alta , Dor Pós-Operatória , Potenciais de Ação , Animais , Feminino , Humanos , Hiperalgesia , Masculino , Ratos , Ratos Sprague-Dawley
3.
Glia ; 68(9): 1840-1858, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32125730

RESUMO

During axonal ensheathment, noncompact myelin channels formed at lateral edges of the myelinating process become arranged into tight paranodal spirals that resemble loops when cut in cross section. These adhere to the axon, concentrating voltage-dependent sodium channels at nodes of Ranvier and patterning the surrounding axon into distinct molecular domains. The signals responsible for forming and maintaining the complex structure of paranodal myelin are poorly understood. Here, we test the hypothesis that the planar cell polarity determinant Vangl2 organizes paranodal myelin. We show that Vangl2 is concentrated at paranodes and that, following conditional knockout of Vangl2 in oligodendrocytes, the paranodal spiral loosens, accompanied by disruption to the microtubule cytoskeleton and mislocalization of autotypic adhesion molecules between loops within the spiral. Adhesion of the spiral to the axon is unaffected. This results in disruptions to axonal patterning at nodes of Ranvier, paranodal axon diameter and conduction velocity. When taken together with our previous work showing that loss of the apico-basal polarity protein Scribble has the opposite phenotype-loss of axonal adhesion but no effect on loop-loop autotypic adhesion-our results identify a novel mechanism by which polarity proteins control the shape of nodes of Ranvier and regulate conduction in the CNS.


Assuntos
Bainha de Mielina , Nós Neurofibrosos , Axônios , Polaridade Celular , Oligodendroglia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA