Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Molecules ; 29(12)2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38930951

RESUMO

The discovery and investigation of new natural compounds with antimicrobial activity are new potential strategies to reduce the spread of antimicrobial resistance. The presented study reveals, for the first time, the promising antibacterial potential of two fractions from Cornu aspersum mucus with an MW < 20 kDa and an MW > 20 kDa against five bacterial pathogens-Bacillus cereus 1085, Propionibacterium acnes 1897, Salmonella enterica 8691, Enterococcus faecalis 3915, and Enterococcus faecium 8754. Using de novo sequencing, 16 novel peptides with potential antibacterial activity were identified in a fraction with an MW < 20 kDa. Some bioactive compounds in a mucus fraction with an MW > 20 kDa were determined via a proteomic analysis on 12% sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and bioinformatics. High homology with proteins and glycoproteins was found, with potential antibacterial activity in mucus proteins named aspernin, hemocyanins, H-lectins, and L-amino acid oxidase-like protein, as well as mucins (mucin-5AC, mucin-5B, mucin-2, and mucin-17). We hypothesize that the synergy between the bioactive components determined in the composition of the fraction > 20 kDa are responsible for the high antibacterial activity against the tested pathogens in concentrations between 32 and 128 µg/mL, which is comparable to vancomycin, but without cytotoxic effects on model eukaryotic cells of Saccharomyces cerevisiae. Additionally, a positive effect, by reducing the levels of intracellular oxidative damage and increasing antioxidant capacity, on S. cerevisiae cells was found for both mucus extract fractions of C. aspersum. These findings may serve as a basis for further studies to develop a new antibacterial agent preventing the development of antibiotic resistance.


Assuntos
Antibacterianos , Testes de Sensibilidade Microbiana , Muco , Peptídeos , Antibacterianos/farmacologia , Antibacterianos/química , Muco/química , Peptídeos/farmacologia , Peptídeos/química , Enterococcus faecalis/efeitos dos fármacos , Enterococcus faecium/efeitos dos fármacos , Bacillus cereus/efeitos dos fármacos , Animais , Propionibacterium acnes/efeitos dos fármacos , Salmonella enterica/efeitos dos fármacos
2.
Pharmaceuticals (Basel) ; 17(4)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38675466

RESUMO

Several biologically active compounds involved in the green synthesis of silver and gold nanoparticles have been isolated from snail mucus and characterized. This paper presents a successful method for the application of snail mucus from Cornu aspersum as a bioreducing agent of copper sulfate and as a biostabilizer of the copper oxide nanoparticles (CuONPs-Muc) obtained. The synthesis at room temperature and neutral pH yielded nanoparticles with a spherical shape and an average diameter of 150 nm. The structure and properties of CuONPs-Muc were characterized using various methods and techniques, such as ultraviolet-visible spectroscopy (UV-vis), high-performance liquid chromatography (HPLC), one-dimensional polyacrylamide gel electrophoresis (1D-PAGE), up-conversion infrared spectroscopy Fourier transform (FTIR), scanning electron microscopy combined with energy dispersive spectroscopy (SEM/EDS), Raman spectroscopy and imaging, thermogravimetric analysis (TG-DSC), etc. Mucus proteins with molecular weights of 30.691 kDa and 26.549 kDa were identified, which are involved in the biogenic production of CuONPs-Muc. The macromolecular shell of proteins formed around the copper ions contributes to a higher efficiency of the synthesized CuONPs-Muc in inhibiting the bacterial growth of several Gram-positive (Bacillus subtilis NBIMCC2353, Bacillus spizizenii ATCC 6633, Staphylococcus aureus ATCC 6538, Listeria innocua NBIMCC8755) and Gram-negative (Escherichia coli ATCC8739, Salmonella enteitidis NBIMCC8691, Salmonella typhimurium ATCC 14028, Stenotrophomonas maltophilia ATCC 17666) bacteria compared to baseline mucus. The bioorganic synthesis of snail mucus presented here provides CuONPs-Muc with a highly pronounced antimicrobial effect. These results will expand knowledge in the field of natural nanomaterials and their role in emerging dosage forms.

3.
Pharmaceuticals (Basel) ; 17(1)2024 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-38256901

RESUMO

Natural products and especially those from marine organisms are being intensively explored as an alternative to synthetic antibiotics. However, the exact mechanisms of their action are not yet well understood. The molecular masses of components in the hemolymph fraction with MW 50-100 kDa from Rapana venosa were determined using ImageQuant™ TL v8.2.0 software based on electrophoretic analysis. Mainly, three types of compounds with antibacterial potential were identified, namely proteins with MW at 50.230 kDa, 62.100 kDa and 93.088 kDa that were homologous to peroxidase-like protein, aplicyanin A and L-amino acid oxidase and functional units with MW 50 kDa from R. venous hemocyanin. Data for their antibacterial effect on Escherichia coli NBIMCC 8785 were obtained by CTC/DAPI-based fluorescent analysis (analysis based on the use of a functional fluorescence probe). The fluorescent analyses demonstrated that a 50% concentration of the fraction with MW 50-100 kDa was able to eliminate 99% of the live bacteria. The antimicrobial effect was detectable even at a 1% concentration of the active compounds. The bacteria in this case had reduced metabolic activity and a 24% decreased size. The fraction had superior action compared with another mollusc product-snail slime-which killed 60% of the E. coli NBIMCC 8785 cells at a 50% concentration and had no effect at a 1% concentration. The obtained results demonstrate the high potential of the fraction with MW 50-100 kDa from R. venosa to eliminate and suppress the development of Escherichia coli NBIMCC 8785 bacteria and could be applied as an appropriate component of therapeutics with the potential to replace antibiotics to avoid the development of antibiotic resistance.

4.
Biochem Biophys Rep ; 37: 101610, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38155944

RESUMO

The fungal strain, Penicillium griseofulvum P29, isolated from a soil sample taken from Terra Nova Bay, Antarctica, was found to be a good producer of sialidase (P29). The present study was focused on the purification and structural characterization of the enzyme. P29 enzyme was purified using a Q-Sepharose column and fast performance liquid chromatography separation on a Mono Q column. The determined molecular mass of the purified enzyme of 40 kDa by SDS-PAGE and 39924.40 Da by matrix desorption/ionization mass spectrometry (MALDI-TOF/MS) analysis correlated well with the calculated mass (39903.75 kDa) from the amino acid sequence of the enzyme. P29 sialidase shows a temperature optimum of 37 °C and low-temperature stability, confirming its cold-active nature. The enzyme is more active towards α(2 â†’ 3) sialyl linkages than those containing α(2 â†’ 6) linkages. Based on the determined amino acid sequence and 3D structural modeling, a 3D model of P29 sialidase was presented, and the properties of the enzyme were explained. The conformational stability of the enzyme was followed by fluorescence spectroscopy, and the new enzyme was found to be conformationally stable in the neutral pH range of pH 6 to pH 9. In addition, the enzyme was more stable in an alkaline environment than in an acidic environment. The purified cold-active enzyme is the only sialidase produced and characterized from Antarctic fungi to date.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA