Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Neurodegener ; 19(1): 47, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38862989

RESUMO

BACKGROUND: LRRK2-targeting therapeutics that inhibit LRRK2 kinase activity have advanced to clinical trials in idiopathic Parkinson's disease (iPD). LRRK2 phosphorylates Rab10 on endolysosomes in phagocytic cells to promote some types of immunological responses. The identification of factors that regulate LRRK2-mediated Rab10 phosphorylation in iPD, and whether phosphorylated-Rab10 levels change in different disease states, or with disease progression, may provide insights into the role of Rab10 phosphorylation in iPD and help guide therapeutic strategies targeting this pathway. METHODS: Capitalizing on past work demonstrating LRRK2 and phosphorylated-Rab10 interact on vesicles that can shed into biofluids, we developed and validated a high-throughput single-molecule array assay to measure extracellular pT73-Rab10. Ratios of pT73-Rab10 to total Rab10 measured in biobanked serum samples were compared between informative groups of transgenic mice, rats, and a deeply phenotyped cohort of iPD cases and controls. Multivariable and weighted correlation network analyses were used to identify genetic, transcriptomic, clinical, and demographic variables that predict the extracellular pT73-Rab10 to total Rab10 ratio. RESULTS: pT73-Rab10 is absent in serum from Lrrk2 knockout mice but elevated by LRRK2 and VPS35 mutations, as well as SNCA expression. Bone-marrow transplantation experiments in mice show that serum pT73-Rab10 levels derive primarily from circulating immune cells. The extracellular ratio of pT73-Rab10 to total Rab10 is dynamic, increasing with inflammation and rapidly decreasing with LRRK2 kinase inhibition. The ratio of pT73-Rab10 to total Rab10 is elevated in iPD patients with greater motor dysfunction, irrespective of disease duration, age, sex, or the usage of PD-related or anti-inflammatory medications. pT73-Rab10 to total Rab10 ratios are associated with neutrophil degranulation, antigenic responses, and suppressed platelet activation. CONCLUSIONS: The extracellular serum ratio of pT73-Rab10 to total Rab10 is a novel pharmacodynamic biomarker for LRRK2-linked innate immune activation associated with disease severity in iPD. We propose that those iPD patients with higher serum pT73-Rab10 levels may benefit from LRRK2-targeting therapeutics that mitigate associated deleterious immunological responses.


Assuntos
Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina , Doença de Parkinson , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/metabolismo , Doença de Parkinson/sangue , Doença de Parkinson/metabolismo , Animais , Humanos , Camundongos , Ratos , Proteínas rab de Ligação ao GTP/metabolismo , Inflamação/metabolismo , Feminino , Fosforilação , Camundongos Transgênicos , Masculino , Pessoa de Meia-Idade , Idoso , Índice de Gravidade de Doença
2.
bioRxiv ; 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38659797

RESUMO

Background: LRRK2-targeting therapeutics that inhibit LRRK2 kinase activity have advanced to clinical trials in idiopathic Parkinson's disease (iPD). LRRK2 phosphorylates Rab10 on endolysosomes in phagocytic cells to promote some types of immunological responses. The identification of factors that regulate LRRK2-mediated Rab10 phosphorylation in iPD, and whether phosphorylated-Rab10 levels change in different disease states, or with disease progression, may provide insights into the role of Rab10 phosphorylation in iPD and help guide therapeutic strategies targeting this pathway. Methods: Capitalizing on past work demonstrating LRRK2 and phosphorylated-Rab10 interact on vesicles that can shed into biofluids, we developed and validated a high-throughput single-molecule array assay to measure extracellular pT73-Rab10. Ratios of pT73-Rab10 to total Rab10 measured in biobanked serum samples were compared between informative groups of transgenic mice, rats, and a deeply phenotyped cohort of iPD cases and controls. Multivariable and weighted correlation network analyses were used to identify genetic, transcriptomic, clinical, and demographic variables that predict the extracellular pT73-Rab10 to total Rab10 ratio. Results: pT73-Rab10 is absent in serum from Lrrk2 knockout mice but elevated by LRRK2 and VPS35 mutations, as well as SNCA expression. Bone-marrow transplantation experiments in mice show that serum pT73-Rab10 levels derive primarily from circulating immune cells. The extracellular ratio of pT73-Rab10 to total Rab10 is dynamic, increasing with inflammation and rapidly decreasing with LRRK2 kinase inhibition. The ratio of pT73-Rab10 to total Rab10 is elevated in iPD patients with greater motor dysfunction, irrespective of disease duration, age, sex, or the usage of PD-related or anti-inflammatory medications. pT73-Rab10 to total Rab10 ratios are associated with neutrophil activation, antigenic responses, and the suppression of platelet activation. Conclusions: The extracellular ratio of pT73-Rab10 to total Rab10 in serum is a novel pharmacodynamic biomarker for LRRK2-linked innate immune activation associated with disease severity in iPD. We propose that those iPD patients with higher serum pT73-Rab10 levels may benefit from LRRK2-targeting therapeutics to mitigate associated deleterious immunological responses.

3.
bioRxiv ; 2023 Sep 22.
Artigo em Inglês | MEDLINE | ID: mdl-37790331

RESUMO

Duplication 15q (dup15q) syndrome is the most common genetic cause of autism spectrum disorder (ASD). Due to a higher genetic and phenotypic homogeneity compared to idiopathic autism, dup15q syndrome provides a well-defined setting to investigate ASD mechanisms. Previous bulk gene expression studies identified shared molecular changes in ASD. However, how cell type specific changes compare across different autism subtypes and how they change during development is largely unknown. In this study, we used single cell and single nucleus mRNA sequencing of dup15q cortical organoids from patient iPSCs, as well as post-mortem patient brain samples. We find cell-type specific dysregulated programs that underlie dup15q pathogenesis, which we validate by spatial resolved transcriptomics using brain tissue samples. We find degraded identity and vulnerability of deep-layer neurons in fetal stage organoids and highlight increased molecular burden of postmortem upper-layer neurons implicated in synaptic signaling, a finding shared between idiopathic ASD and dup15q syndrome. Gene co-expression network analysis of organoid and postmortem excitatory neurons uncovers modules enriched with autism risk genes. Organoid developmental modules were involved in transcription regulation via chromatin remodeling, while postmortem modules were associated with synaptic transmission and plasticity. The findings reveal a shifting landscape of ASD cellular vulnerability during brain development.

4.
Science ; 382(6667): eadf0834, 2023 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-37824647

RESUMO

We analyzed >700,000 single-nucleus RNA sequencing profiles from 106 donors during prenatal and postnatal developmental stages and identified lineage-specific programs that underlie the development of specific subtypes of excitatory cortical neurons, interneurons, glial cell types, and brain vasculature. By leveraging single-nucleus chromatin accessibility data, we delineated enhancer gene regulatory networks and transcription factors that control commitment of specific cortical lineages. By intersecting our results with genetic risk factors for human brain diseases, we identified the cortical cell types and lineages most vulnerable to genetic insults of different brain disorders, especially autism. We find that lineage-specific gene expression programs up-regulated in female cells are especially enriched for the genetic risk factors of autism. Our study captures the molecular progression of cortical lineages across human development.


Assuntos
Encefalopatias , Córtex Cerebral , Neurônios , Feminino , Humanos , Recém-Nascido , Gravidez , Encefalopatias/genética , Córtex Cerebral/crescimento & desenvolvimento , Redes Reguladoras de Genes , Interneurônios/metabolismo , Neurônios/metabolismo , Análise de Célula Única , Masculino , Fatores de Risco
5.
J Clin Invest ; 133(6)2023 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-36602862

RESUMO

Mutations in the human progranulin (GRN) gene are a leading cause of frontotemporal lobar degeneration (FTLD). While previous studies implicate aberrant microglial activation as a disease-driving factor in neurodegeneration in the thalamocortical circuit in Grn-/- mice, the exact mechanism for neurodegeneration in FTLD-GRN remains unclear. By performing comparative single-cell transcriptomics in the thalamus and frontal cortex of Grn-/- mice and patients with FTLD-GRN, we have uncovered a highly conserved astroglial pathology characterized by upregulation of gap junction protein GJA1, water channel AQP4, and lipid-binding protein APOE, and downregulation of glutamate transporter SLC1A2 that promoted profound synaptic degeneration across the two species. This astroglial toxicity could be recapitulated in mouse astrocyte-neuron cocultures and by transplanting induced pluripotent stem cell-derived astrocytes to cortical organoids, where progranulin-deficient astrocytes promoted synaptic degeneration, neuronal stress, and TDP-43 proteinopathy. Together, these results reveal a previously unappreciated astroglial pathology as a potential key mechanism in neurodegeneration in FTLD-GRN.


Assuntos
Demência Frontotemporal , Degeneração Lobar Frontotemporal , Humanos , Animais , Camundongos , Progranulinas/genética , Demência Frontotemporal/genética , Astrócitos/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Mutação , Degeneração Lobar Frontotemporal/genética , Degeneração Lobar Frontotemporal/metabolismo , Degeneração Lobar Frontotemporal/patologia
6.
Acta Neuropathol ; 144(5): 987-1003, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36112223

RESUMO

Multiple sclerosis (MS) is a multifocal and progressive inflammatory disease of the central nervous system (CNS). However, the compartmentalized pathology of the disease affecting various anatomical regions including gray and white matter and lack of appropriate disease models impede understanding of the disease. Utilizing single-nucleus RNA-sequencing and multiplex spatial RNA mapping, we generated an integrated transcriptomic map comprising leukocortical, cerebellar and spinal cord areas in normal and MS tissues that captures regional subtype diversity of various cell types with an emphasis on astrocytes and oligodendrocytes. While we found strong cross-regional diversity among glial subtypes in control tissue, regional signatures become more obscure in MS. This suggests that patterns of transcriptomic changes in MS are shared across regions and converge on specific pathways, especially those regulating cellular stress and immune activation. In addition, we found evidence that a subtype of white matter oligodendrocytes appearing across all three CNS regions adopt pro-remyelinating gene signatures in MS. In summary, our data suggest that cross-regional transcriptomic glial signatures overlap in MS, with different reactive glial cell types capable of either exacerbating or ameliorating pathology.


Assuntos
Esclerose Múltipla , Substância Branca , Astrócitos/patologia , Humanos , Esclerose Múltipla/patologia , Neuroglia/patologia , Oligodendroglia/metabolismo , RNA/metabolismo , Substância Branca/patologia
7.
Proc Natl Acad Sci U S A ; 119(30): e2122236119, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35858406

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) readily infects a variety of cell types impacting the function of vital organ systems, with particularly severe impact on respiratory function. Neurological symptoms, which range in severity, accompany as many as one-third of COVID-19 cases, indicating a potential vulnerability of neural cell types. To assess whether human cortical cells can be directly infected by SARS-CoV-2, we utilized stem-cell-derived cortical organoids as well as primary human cortical tissue, both from developmental and adult stages. We find significant and predominant infection in cortical astrocytes in both primary tissue and organoid cultures, with minimal infection of other cortical populations. Infected and bystander astrocytes have a corresponding increase in inflammatory gene expression, reactivity characteristics, increased cytokine and growth factor signaling, and cellular stress. Although human cortical cells, particularly astrocytes, have no observable ACE2 expression, we find high levels of coronavirus coreceptors in infected astrocytes, including CD147 and DPP4. Decreasing coreceptor abundance and activity reduces overall infection rate, and increasing expression is sufficient to promote infection. Thus, we find tropism of SARS-CoV-2 for human astrocytes resulting in inflammatory gliosis-type injury that is dependent on coronavirus coreceptors.


Assuntos
Astrócitos , Córtex Cerebral , SARS-CoV-2 , Tropismo Viral , Enzima de Conversão de Angiotensina 2/metabolismo , Astrócitos/enzimologia , Astrócitos/virologia , Córtex Cerebral/virologia , Humanos , Organoides/virologia , Cultura Primária de Células , SARS-CoV-2/fisiologia
8.
bioRxiv ; 2021 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-33469577

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) readily infects a variety of cell types impacting the function of vital organ systems, with particularly severe impact on respiratory function. It proves fatal for one percent of those infected. Neurological symptoms, which range in severity, accompany a significant proportion of COVID-19 cases, indicating a potential vulnerability of neural cell types. To assess whether human cortical cells can be directly infected by SARS-CoV-2, we utilized primary human cortical tissue and stem cell-derived cortical organoids. We find significant and predominant infection in cortical astrocytes in both primary and organoid cultures, with minimal infection of other cortical populations. Infected astrocytes had a corresponding increase in reactivity characteristics, growth factor signaling, and cellular stress. Although human cortical cells, including astrocytes, have minimal ACE2 expression, we find high levels of alternative coronavirus receptors in infected astrocytes, including DPP4 and CD147. Inhibition of DPP4 reduced infection and decreased expression of the cell stress marker, ARCN1. We find tropism of SARS-CoV-2 for human astrocytes mediated by DPP4, resulting in reactive gliosis-type injury.

9.
Nature ; 588(7838): 459-465, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32866962

RESUMO

Aberrant aggregation of the RNA-binding protein TDP-43 in neurons is a hallmark of frontotemporal lobar degeneration caused by haploinsufficiency in the gene encoding progranulin1,2. However, the mechanism leading to TDP-43 proteinopathy remains unclear. Here we use single-nucleus RNA sequencing to show that progranulin deficiency promotes microglial transition from a homeostatic to a disease-specific state that causes endolysosomal dysfunction and neurodegeneration in mice. These defects persist even when Grn-/- microglia are cultured ex vivo. In addition, single-nucleus RNA sequencing reveals selective loss of excitatory neurons at disease end-stage, which is characterized by prominent nuclear and cytoplasmic TDP-43 granules and nuclear pore defects. Remarkably, conditioned media from Grn-/- microglia are sufficient to promote TDP-43 granule formation, nuclear pore defects and cell death in excitatory neurons via the complement activation pathway. Consistent with these results, deletion of the genes encoding C1qa and C3 mitigates microglial toxicity and rescues TDP-43 proteinopathy and neurodegeneration. These results uncover previously unappreciated contributions of chronic microglial toxicity to TDP-43 proteinopathy during neurodegeneration.


Assuntos
Microglia/metabolismo , Microglia/patologia , Neurônios/metabolismo , Neurônios/patologia , Progranulinas/deficiência , Proteinopatias TDP-43/metabolismo , Proteinopatias TDP-43/patologia , Envelhecimento/genética , Envelhecimento/patologia , Animais , Núcleo Celular/genética , Núcleo Celular/patologia , Ativação do Complemento/efeitos dos fármacos , Ativação do Complemento/imunologia , Complemento C1q/antagonistas & inibidores , Complemento C1q/imunologia , Complemento C3b/antagonistas & inibidores , Complemento C3b/imunologia , Meios de Cultivo Condicionados/química , Meios de Cultivo Condicionados/farmacologia , Proteínas de Ligação a DNA/metabolismo , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Poro Nuclear/metabolismo , Poro Nuclear/patologia , Progranulinas/genética , RNA-Seq , Análise de Célula Única , Proteinopatias TDP-43/tratamento farmacológico , Proteinopatias TDP-43/genética , Tálamo/metabolismo , Tálamo/patologia , Transcriptoma
10.
Cell ; 182(3): 594-608.e11, 2020 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-32679030

RESUMO

Human cerebral cortex size and complexity has increased greatly during evolution. While increased progenitor diversity and enhanced proliferative potential play important roles in human neurogenesis and gray matter expansion, the mechanisms of human oligodendrogenesis and white matter expansion remain largely unknown. Here, we identify EGFR-expressing "Pre-OPCs" that originate from outer radial glial cells (oRGs) and undergo mitotic somal translocation (MST) during division. oRG-derived Pre-OPCs provide an additional source of human cortical oligodendrocyte precursor cells (OPCs) and define a lineage trajectory. We further show that human OPCs undergo consecutive symmetric divisions to exponentially increase the progenitor pool size. Additionally, we find that the OPC-enriched gene, PCDH15, mediates daughter cell repulsion and facilitates proliferation. These findings indicate properties of OPC derivation, proliferation, and dispersion important for human white matter expansion and myelination.


Assuntos
Caderinas/metabolismo , Córtex Cerebral/citologia , Células Ependimogliais/metabolismo , Neurogênese/genética , Células Precursoras de Oligodendrócitos/metabolismo , Proteínas Relacionadas a Caderinas , Caderinas/genética , Proliferação de Células/genética , Células Cultivadas , Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Células Ependimogliais/citologia , Receptores ErbB/genética , Receptores ErbB/metabolismo , Células HEK293 , Humanos , Imuno-Histoquímica , Células Precursoras de Oligodendrócitos/citologia , RNA Interferente Pequeno , RNA-Seq , Análise de Célula Única , Substância Branca/citologia , Substância Branca/embriologia , Substância Branca/metabolismo
11.
Mol Autism ; 11(1): 39, 2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32460837

RESUMO

BACKGROUND: Studies of individuals with autism spectrum disorder (ASD) have revealed a strong multigenic basis with the identification of hundreds of ASD susceptibility genes. ASD is characterized by social deficits and a range of other phenotypes, implicating complex genetics and involvement of a variety of brain regions. However, how mutations and mis-expression of select gene sets are associated with the behavioral components of ASD remains unknown. We reasoned that for genes to be associated with ASD core behaviors they must be: (1) expressed in brain regions relevant to ASD social behaviors and (2) expressed during the ASD susceptible window of brain development. METHODS: Focusing on the amygdala, a brain region whose dysfunction has been highly implicated in the social component of ASD, we mined publicly available gene expression databases to identify ASD-susceptibility genes expressed during human and mouse amygdala development. We found that a large cohort of known ASD susceptibility genes is expressed in the developing human and mouse amygdala. We further performed analysis of single-nucleus RNA-seq (snRNA-seq) data from microdissected amygdala tissue from five ASD and five control human postmortem brains ranging in age from 4 to 20 years to elucidate cell type specificity of amygdala-expressed genes and their dysregulation in ASD. RESULTS: Our analyses revealed that of the high-ranking ASD susceptibility genes, 80 are expressed in both human and mouse amygdala during fetal to early postnatal stages of development. Our human snRNA-seq analyses revealed cohorts of genes with altered expression in the ASD amygdala postnatally, especially within excitatory neurons, with dysregulated expression of seven genes predicted from our datamining pipeline. LIMITATIONS: We were limited by the ages for which we were able to obtain human tissue; therefore, the results from our datamining pipeline approach will require validation, to the extent possible, in human tissue from earlier developmental stages. CONCLUSIONS: Our pipeline narrows down the number of amygdala-expressed genes possibly involved in the social pathophysiology of ASD. Our human single-nucleus gene expression analyses revealed that ASD is characterized by changes in gene expression in specific cell types in the early postnatal amygdala.


Assuntos
Tonsila do Cerebelo/metabolismo , Transtorno do Espectro Autista/etiologia , Biomarcadores , Suscetibilidade a Doenças , Alelos , Tonsila do Cerebelo/fisiopatologia , Animais , Transtorno do Espectro Autista/metabolismo , Encéfalo/metabolismo , Encéfalo/fisiopatologia , Biologia Computacional/métodos , Bases de Dados Genéticas , Expressão Gênica , Perfilação da Expressão Gênica , Ontologia Genética , Redes Reguladoras de Genes , Predisposição Genética para Doença , Humanos , Camundongos , Transdução de Sinais , Transcriptoma
12.
Mol Neurobiol ; 57(5): 2279-2289, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32008165

RESUMO

Despite its heterogeneity, autism is characterized by a defined behavioral phenotype, suggesting that the molecular pathology affects specific neural substrates to cause behavioral dysfunction. Previous studies identified genes dysregulated in autism cortex but did not address their cell-type specificity. Moreover, it is unknown whether there is a core of genes dysregulated across multiple neocortical regions. We applied RNA sequencing to postmortem brain tissue samples from autism patients and neurologically normal controls and combined our data with previously published datasets. We then identified genes, pathways, and alternative splicing events which are dysregulated in five neocortical regions in autism. To gain information about cell-type specificity of the dysregulated genes, we analyzed single-nuclei RNA sequencing data of adult human cortex and intersected cell-type-specific gene signatures with genes dysregulated in autism in specific cortical regions. We found that autism-associated gene expression changes across 4 frontal and temporal cortex regions converge on 27 genes related to immune response and enriched in human astrocytes, microglia, and brain endothelium. Shared splicing changes, however, are found in genes predominantly associated with synaptic function and adult interneurons and projection neurons. Finally, we demonstrate that regions of DNA differentially methylated in autism overlap genes associated with development and enriched in human cortical oligodendrocytes. Our study identifies signatures of autism molecular pathology shared across neocortical regions, as well as neural cell types enriched for common dysregulated genes, thus paving way for assessing cell-type-specific mechanisms of autism pathology.


Assuntos
Transtorno do Espectro Autista/genética , Neocórtex/metabolismo , RNA Mensageiro/análise , Processamento Alternativo , Transtorno do Espectro Autista/patologia , Metilação de DNA , Regulação da Expressão Gênica , Ontologia Genética , Humanos , Imunidade/genética , Redes e Vias Metabólicas/genética , Neocórtex/patologia , Neuroglia/metabolismo , Neurônios/metabolismo , Córtex Pré-Frontal/metabolismo , Córtex Pré-Frontal/patologia , RNA Mensageiro/genética , Reação em Cadeia da Polimerase em Tempo Real , Análise de Sequência de RNA , Análise de Célula Única , Sinapses/metabolismo , Lobo Temporal/metabolismo , Lobo Temporal/patologia , Transcriptoma
13.
Cell Stem Cell ; 26(1): 48-63.e6, 2020 01 02.
Artigo em Inglês | MEDLINE | ID: mdl-31901251

RESUMO

Glioblastoma is a devastating form of brain cancer. To identify aspects of tumor heterogeneity that may illuminate drivers of tumor invasion, we created a glioblastoma tumor cell atlas with single-cell transcriptomics of cancer cells mapped onto a reference framework of the developing and adult human brain. We find that multiple GSC subtypes exist within a single tumor. Within these GSCs, we identify an invasive cell population similar to outer radial glia (oRG), a fetal cell type that expands the stem cell niche in normal human cortex. Using live time-lapse imaging of primary resected tumors, we discover that tumor-derived oRG-like cells undergo characteristic mitotic somal translocation behavior previously only observed in human development, suggesting a reactivation of developmental programs. In addition, we show that PTPRZ1 mediates both mitotic somal translocation and glioblastoma tumor invasion. These data suggest that the presence of heterogeneous GSCs may underlie glioblastoma's rapid progression and invasion.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Adulto , Neoplasias Encefálicas/genética , Linhagem Celular Tumoral , Células Ependimogliais , Glioblastoma/genética , Humanos , Células-Tronco Neoplásicas , Proteínas Tirosina Fosfatases Classe 5 Semelhantes a Receptores
14.
Nature ; 573(7772): 75-82, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31316211

RESUMO

Multiple sclerosis (MS) is a neuroinflammatory disease with a relapsing-remitting disease course at early stages, distinct lesion characteristics in cortical grey versus subcortical white matter and neurodegeneration at chronic stages. Here we used single-nucleus RNA sequencing to assess changes in expression in multiple cell lineages in MS lesions and validated the results using multiplex in situ hybridization. We found selective vulnerability and loss of excitatory CUX2-expressing projection neurons in upper-cortical layers underlying meningeal inflammation; such MS neuron populations exhibited upregulation of stress pathway genes and long non-coding RNAs. Signatures of stressed oligodendrocytes, reactive astrocytes and activated microglia mapped most strongly to the rim of MS plaques. Notably, single-nucleus RNA sequencing identified phagocytosing microglia and/or macrophages by their ingestion and perinuclear import of myelin transcripts, confirmed by functional mouse and human culture assays. Our findings indicate lineage- and region-specific transcriptomic changes associated with selective cortical neuron damage and glial activation contributing to progression of MS lesions.


Assuntos
Linhagem da Célula , Esclerose Múltipla/patologia , Neurônios/patologia , Adulto , Animais , Astrócitos/metabolismo , Astrócitos/patologia , Autopsia , Criopreservação , Feminino , Proteínas de Homeodomínio/metabolismo , Humanos , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Camundongos , Microglia/metabolismo , Microglia/patologia , Pessoa de Meia-Idade , Esclerose Múltipla/genética , Bainha de Mielina/metabolismo , Neurônios/metabolismo , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Fagocitose , RNA Nuclear Pequeno/análise , RNA Nuclear Pequeno/genética , RNA-Seq , Transcriptoma/genética
15.
Nat Commun ; 10(1): 2748, 2019 06 21.
Artigo em Inglês | MEDLINE | ID: mdl-31227709

RESUMO

The human amygdala grows during childhood, and its abnormal development is linked to mood disorders. The primate amygdala contains a large population of immature neurons in the paralaminar nuclei (PL), suggesting protracted development and possibly neurogenesis. Here we studied human PL development from embryonic stages to adulthood. The PL develops next to the caudal ganglionic eminence, which generates inhibitory interneurons, yet most PL neurons express excitatory markers. In children, most PL cells are immature (DCX+PSA-NCAM+), and during adolescence many transition into mature (TBR1+VGLUT2+) neurons. Immature PL neurons persist into old age, yet local progenitor proliferation sharply decreases in infants. Using single nuclei RNA sequencing, we identify the transcriptional profile of immature excitatory neurons in the human amygdala between 4-15 years. We conclude that the human PL contains excitatory neurons that remain immature for decades, a possible substrate for persistent plasticity at the interface of the hippocampus and amygdala.


Assuntos
Desenvolvimento do Adolescente/fisiologia , Complexo Nuclear Basolateral da Amígdala/crescimento & desenvolvimento , Células-Tronco Neurais/fisiologia , Neurogênese/fisiologia , Neurônios/fisiologia , Adolescente , Adulto , Idoso , Complexo Nuclear Basolateral da Amígdala/citologia , Núcleo Celular/genética , Criança , Pré-Escolar , Feto , Hipocampo/fisiologia , Humanos , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Plasticidade Neuronal/fisiologia , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Adulto Jovem
16.
Science ; 364(6441): 685-689, 2019 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-31097668

RESUMO

Despite the clinical and genetic heterogeneity of autism, bulk gene expression studies show that changes in the neocortex of autism patients converge on common genes and pathways. However, direct assessment of specific cell types in the brain affected by autism has not been feasible until recently. We used single-nucleus RNA sequencing of cortical tissue from patients with autism to identify autism-associated transcriptomic changes in specific cell types. We found that synaptic signaling of upper-layer excitatory neurons and the molecular state of microglia are preferentially affected in autism. Moreover, our results show that dysregulation of specific groups of genes in cortico-cortical projection neurons correlates with clinical severity of autism. These findings suggest that molecular changes in upper-layer cortical circuits are linked to behavioral manifestations of autism.


Assuntos
Transtorno Autístico/genética , Transtorno Autístico/psicologia , Regulação da Expressão Gênica , Neocórtex/metabolismo , Adolescente , Núcleo Celular/metabolismo , Criança , Pré-Escolar , Feminino , Perfilação da Expressão Gênica , Genômica/métodos , Humanos , Masculino , Microglia/metabolismo , Neurônios/metabolismo , Análise de Sequência de RNA , Análise de Célula Única/métodos , Adulto Jovem
17.
Neuron ; 102(1): 143-158.e7, 2019 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-30770253

RESUMO

In the developing human neocortex, progenitor cells generate diverse cell types prenatally. Progenitor cells and newborn neurons respond to signaling cues, including neurotransmitters. While single-cell RNA sequencing has revealed cellular diversity, physiological heterogeneity has yet to be mapped onto these developing and diverse cell types. By combining measurements of intracellular Ca2+ elevations in response to neurotransmitter receptor agonists and RNA sequencing of the same single cells, we show that Ca2+ responses are cell-type-specific and change dynamically with lineage progression. Physiological response properties predict molecular cell identity and additionally reveal diversity not captured by single-cell transcriptomics. We find that the serotonin receptor HTR2A selectively activates radial glia cells in the developing human, but not mouse, neocortex, and inhibiting HTR2A receptors in human radial glia disrupts the radial glial scaffold. We show highly specific neurotransmitter signaling during neurogenesis in the developing human neocortex and highlight evolutionarily divergent mechanisms of physiological signaling.


Assuntos
Cálcio/metabolismo , Células Ependimogliais/metabolismo , Neocórtex/embriologia , Neurogênese/genética , Receptor 5-HT2A de Serotonina/metabolismo , Animais , Encéfalo/embriologia , Encéfalo/metabolismo , Linhagem da Célula , Perfilação da Expressão Gênica , Regulação da Expressão Gênica no Desenvolvimento/genética , Regulação da Expressão Gênica no Desenvolvimento/fisiologia , Humanos , Camundongos , Neocórtex/citologia , Neocórtex/metabolismo , Neurogênese/fisiologia , Análise de Sequência de RNA , Serotonina/metabolismo , Análise de Célula Única
18.
Science ; 358(6368): 1318-1323, 2017 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-29217575

RESUMO

Systematic analyses of spatiotemporal gene expression trajectories during organogenesis have been challenging because diverse cell types at different stages of maturation and differentiation coexist in the emerging tissues. We identified discrete cell types as well as temporally and spatially restricted trajectories of radial glia maturation and neurogenesis in developing human telencephalon. These lineage-specific trajectories reveal the expression of neurogenic transcription factors in early radial glia and enriched activation of mammalian target of rapamycin signaling in outer radial glia. Across cortical areas, modest transcriptional differences among radial glia cascade into robust typological distinctions among maturing neurons. Together, our results support a mixed model of topographical, typological, and temporal hierarchies governing cell-type diversity in the developing human telencephalon, including distinct excitatory lineages emerging in rostral and caudal cerebral cortex.


Assuntos
Córtex Cerebral/crescimento & desenvolvimento , Regulação da Expressão Gênica no Desenvolvimento , Neurogênese/genética , Telencéfalo/crescimento & desenvolvimento , Córtex Cerebral/anatomia & histologia , Córtex Cerebral/citologia , Humanos , Neuroglia/fisiologia , Neurônios , Telencéfalo/anatomia & histologia , Telencéfalo/citologia
19.
Mol Cell Neurosci ; 85: 183-189, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-29055697

RESUMO

Natural antisense transcripts (NATs) are an abundant class of long noncoding RNAs that have recently been shown to be key regulators of chromatin dynamics and gene expression in nervous system development and neurological disorders. However, it is currently unclear if NAT-based mechanisms also play a role in drug-induced neuroadaptations. Aberrant regulation of gene expression is one critical factor underlying the long-lasting behavioral abnormalities that characterize substance use disorder, and it is possible that some drug-induced transcriptional responses are mediated, in part, by perturbations in NAT activity. To test this hypothesis, we used an automated algorithm that mines the NCBI AceView transcriptomics database to identify NAT overlapping genes linked to addiction. We found that 22% of the genes examined contain NATs and that expression of Homer1 natural antisense transcript (Homer1-AS) was altered in the nucleus accumbens (NAc) of mice 2h and 10days following repeated cocaine administration. In in vitro studies, depletion of Homer1-AS lead to an increase in the corresponding sense gene expression, indicating a potential regulatory mechanisms of Homer1 expression by its corresponding antisense transcript. Future in vivo studies are needed to definitely determine a role for Homer1-AS in cocaine-induced behavioral and molecular adaptations.


Assuntos
Cocaína/farmacologia , Inibidores da Captação de Dopamina/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Arcabouço Homer/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , RNA Antissenso/biossíntese , Animais , Regulação da Expressão Gênica/genética , Proteínas de Arcabouço Homer/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , RNA Antissenso/efeitos dos fármacos
20.
Methods Mol Biol ; 1543: 129-143, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28349424

RESUMO

Deep-RACE (or RACEseq) is a recently described method (Olivarius et al. BioTechniques 46(2):130-132, 2009) that applies next-generation sequencing to the Rapid Amplification of cDNA End (RACE) protocol to define the 5' and 3' ends of RNA transcripts. Conventional mapping of 5' and 3' ends is achieved by manually cloning the PCR product of RACE followed by Sanger sequencing; this process can become costly and time-consuming when investigating multiple transcripts. High-throughput sequencing of the RACE products streamlines this process by eliminating the need to manually cut bands from an agarose gel and to clone each product individually. Importantly, in addition to these advantages, next-generation sequencing can detect low abundance fragments that would be difficult to extract from gel and clone for Sanger sequencing. For these reasons, Deep-RACE is an ideal protocol for the comprehensive study of noncoding transcripts from both intergenic regions of the genome and from within the loci of protein coding genes.


Assuntos
DNA Complementar/genética , Loci Gênicos , Técnicas de Amplificação de Ácido Nucleico , RNA não Traduzido , Primers do DNA , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , RNA Longo não Codificante/genética , Transcrição Gênica , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA