Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
mSphere ; 7(3): e0091421, 2022 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-35477320

RESUMO

Our group was the first to describe direct antagonism of the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway by dengue virus (DENV) in human cells, and here, we report new findings on the characterization of the interaction between the DENV nonstructural protein 2B (NS2B)-NS3 (NS2B3) protease complex and STING. We demonstrate interactions between NS2B and the transmembrane domains of human STING and between NS3 and a portion of the cytoplasmic C-terminal domain of human STING. One significant obstacle we face today in the DENV field is the lack of small animal models available that can effectively recapitulate DENV pathogenesis in the early events of infection. The existing mouse models are either immunocompromised mice lacking interferon (IFN) receptors or "humanized" mice reconstituted with human stem cells. However, both approaches fail to capture important aspects of human pathogenesis because they lack critical innate immunity components or have deficiencies in immune cell development or maintenance. As an important step toward developing an immunocompetent mouse model for DENV, we have generated two chimeric human-mouse STING constructs that have promise in retaining both cleavability by NS2B3 and signaling capacity in the mouse. IMPORTANCE This article characterizes the interaction between human STING and DENV viral protease complex NS2B3 by constructing serial deletion mutants of STING. Our findings suggest that DENV nonstructural protein NS2B interacts with the transmembrane domains and NS3 with the C-terminal cyclic dinucleotide binding domain of human STING. Furthermore, as there exists no ideal immunocompetent murine model that can simultaneously support robust DENV replication and recapitulate the clinical manifestation of dengue disease observed in humans, we expressed and characterized two promising human-mouse chimeric STING constructs that can be used for developing a relevant transgenic mouse model to study dengue in the future. Both constructs can activate normal IFN responses in the overexpression system and be cleaved under infection conditions. We believe our findings offer a roadmap to the further development of a murine model that can greatly facilitate antiviral discoveries and vaccine research for DENV.


Assuntos
Vírus da Dengue , Proteínas de Membrana , Replicação Viral , Animais , Dengue , Vírus da Dengue/fisiologia , Modelos Animais de Doenças , Humanos , Interferons/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Camundongos
2.
Exp Biol Med (Maywood) ; 247(24): 2201-2212, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36734144

RESUMO

Annually, roughly 2.5 billion people are at risk for dengue virus (DENV) infection, and the incidence of infection has increased 30-fold since its discovery in the 1900s. At present, there are no globally licensed antiviral treatments or vaccines that protect against all four of the DENV serotypes. The NIAID Live Attenuated Tetravalent Vaccine (LATV) dengue vaccine candidate is composed of variants of three DENV serotypes attenuated by a 30 nucleotide (Δ30) deletion in the 3' untranslated region and a fourth component that is a chimeric virus in which the prM and E genes of DENV-2 replace those of DENV-4 on the rDEN4Δ30 backbone. The vaccine candidate encodes the non-structural proteins of DENV-1, DENV-3, and DENV-4, which could be of critical importance in the presentation of DENV-specific epitopes in a manner that facilitates antigen presentation and confers higher protection. Our findings demonstrate that the attenuation mechanism (Δ30) resulted in decreased viral infectivity and replication for each vaccine virus in monocyte-derived dendritic cells but were able to generate a robust innate immune response. When tested as monovalent viruses, DEN-4Δ30 displayed the most immunogenic profile. In addition, we found that the tetravalent DENV formulation induced a significantly greater innate immune response than the trivalent formulation. We demonstrate that the presence of two components with a DENV-4Δ30 backbone is necessary for the induction of RANTES, CD40, IP-10, and Type I IFN by the tetravalent formulation. Finally, we found that the DEN-4Δ30 backbone in the DENV-2 component of the vaccine enhanced its antigenic properties, as evidenced by enhanced ability to induce IP-10 and IFNα2 in monocyte-derived dendritic cells. In sum, our study shows that the Δ30 and Δ30/Δ31 mutations attenuate the DENV vaccine strains in terms of replication and infectivity while still allowing the induction of a robust innate immune response.


Assuntos
Vacinas contra Dengue , Vírus da Dengue , Dengue , Estados Unidos , Humanos , Dengue/prevenção & controle , Vírus da Dengue/genética , Vacinas contra Dengue/genética , Anticorpos Antivirais , Vacinas Combinadas , National Institute of Allergy and Infectious Diseases (U.S.) , Quimiocina CXCL10 , Vacinas Atenuadas/genética , Imunidade Inata , Anticorpos Neutralizantes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...