Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Microbiol Spectr ; 12(5): e0241823, 2024 May 02.
Artigo em Inglês | MEDLINE | ID: mdl-38591917

RESUMO

The tenacious biofilms formed by Streptococcus mutans are resistant to conventional antibiotics and current treatments. There is a growing need for novel therapeutics that selectively inhibit S. mutans biofilms while preserving the normal oral microenvironment. Previous studies have shown that increased levels of cyclic di-AMP, an important secondary messenger synthesized by diadenylate cyclase (DAC), favored biofilm formation in S. mutans. Thus, targeting S. mutans DAC is a novel strategy to inhibit S. mutans biofilms. We screened a small NCI library of natural products using a fluorescence detection assay. (+)-Brazilin, a tetracyclic homoisoflavanoid found in the heartwood of Caesalpinia sappan, was identified as one of the 11 "hits," with the greatest reduction (>99%) in fluorescence at 100 µM. The smDAC inhibitory profiles of the 11 "hits" established by a quantitative high-performance liquid chromatography assay revealed that (+)-brazilin had the most enzymatic inhibitory activity (87% at 100 µM) and was further studied to determine its half maximal inhibitory concentration (IC50 = 25.1 ± 0.98 µM). (+)-Brazilin non-competitively inhibits smDAC's enzymatic activity (Ki = 140.0 ± 27.13 µM), as determined by a steady-state Michaelis-Menten kinetics assay. In addition, (+)-brazilin's binding profile with smDAC (Kd = 11.87 µM) was illustrated by a tyrosine intrinsic fluorescence quenching assay. Furthermore, at low micromolar concentrations, (+)-brazilin selectively inhibited the biofilm of S. mutans (IC50 = 21.0 ± 0.60 µM) and other oral bacteria. S. mutans biofilms were inhibited by a factor of 105 in colony-forming units when treated with 50 µM (+)-brazilin. In addition, a significant dose-dependent reduction in extracellular DNA and glucan levels was evident by fluorescence microscopy imaging of S. mutans biofilms exposed to different concentrations of (+)-brazilin. Furthermore, colonization of S. mutans on a representative model of enamel using suspended hydroxyapatite discs showed a >90% reduction with 50 µM (+)-brazilin. In summary, we have identified a drug-like natural product inhibitor of S. mutans biofilm that not only binds to smDAC but can also inhibit the function of smDAC. (+)-Brazilin could be a good candidate for further development as a potent therapeutic for the prevention and treatment of dental caries.IMPORTANCEThis study represents a significant advancement in our understanding of potential therapeutic options for combating cariogenic biofilms produced by Streptococcus mutans. The research delves into the use of (+)-brazilin, a natural product, as a potent inhibitor of Streptococcus mutans' diadenylate cyclase (smDAC), an enzyme crucial in the formation of biofilms. The study establishes (+)-brazilin as a non-competitive inhibitor of smDAC while providing initial insights into its binding mechanism. What makes this finding even more promising is that (+)-brazilin does not limit its inhibitory effects to S. mutans alone. Instead, it demonstrates efficacy in hindering biofilms in other oral bacteria as well. The broader spectrum of anti-biofilm activity suggests that (+)-brazilin could potentially serve as a versatile tool in a natural product-based treatment for combating a range of conditions caused by resilient biofilms.


Assuntos
Antibacterianos , Biofilmes , Isoflavonas , Streptococcus mutans , Biofilmes/efeitos dos fármacos , Streptococcus mutans/efeitos dos fármacos , Streptococcus mutans/enzimologia , Isoflavonas/farmacologia , Isoflavonas/metabolismo , Isoflavonas/química , Antibacterianos/farmacologia , Antibacterianos/química , Produtos Biológicos/farmacologia , Produtos Biológicos/química , Testes de Sensibilidade Microbiana , Fósforo-Oxigênio Liases/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Humanos
2.
J Med Chem ; 66(12): 7909-7925, 2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37285134

RESUMO

We designed and synthesized analogues of a previously identified biofilm inhibitor IIIC5 to improve solubility, retain inhibitory activities, and to facilitate encapsulation into pH-responsive hydrogel microparticles. The optimized lead compound HA5 showed improved solubility of 120.09 µg/mL, inhibited Streptococcus mutans biofilm with an IC50 value of 6.42 µM, and did not affect the growth of oral commensal species up to a 15-fold higher concentration. The cocrystal structure of HA5 with GtfB catalytic domain determined at 2.35 Å resolution revealed its active site interactions. The ability of HA5 to inhibit S. mutans Gtfs and to reduce glucan production has been demonstrated. The hydrogel-encapsulated biofilm inhibitor (HEBI), generated by encapsulating HA5 in hydrogel, selectively inhibited S. mutans biofilms like HA5. Treatment of S. mutans-infected rats with HA5 or HEBI resulted in a significant reduction in buccal, sulcal, and proximal dental caries compared to untreated, infected rats.


Assuntos
Cárie Dentária , Streptococcus mutans , Ratos , Animais , Hidrogéis , Cárie Dentária/tratamento farmacológico , Biofilmes
3.
Cancers (Basel) ; 15(10)2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37345144

RESUMO

Our results from quantitative RT-PCR, Western blotting, immunohistochemistry, and the tissue microarray of medullary thyroid cancer (MTC) cell lines and patient specimens confirm that VGSC subtype NaV1.7 is uniquely expressed in aggressive MTC and not expressed in normal thyroid cells and tissues. We establish the druggability of NaV1.7 in MTC by identifying a novel inhibitor (SV188) and investigate its mode of binding and ability to inhibit INa current in NaV1.7. The whole-cell patch-clamp studies of the SV188 in the NaV1.7 channels expressed in HEK-293 cells show that SV188 inhibited the INa current in NaV1.7 with an IC50 value of 3.6 µM by a voltage- and use-dependent blockade mechanism, and the maximum inhibitory effect is observed when the channel is open. SV188 inhibited the viability of MTC cell lines, MZ-CRC-1 and TT, with IC50 values of 8.47 µM and 9.32 µM, respectively, and significantly inhibited the invasion of MZ-CRC-1 cells by 35% and 52% at 3 µM and 6 µM, respectively. In contrast, SV188 had no effect on the invasion of TT cells derived from primary tumor, which have lower basal expression of NaV1.7. In addition, SV188 at 3 µM significantly inhibited the migration of MZ-CRC-1 and TT cells by 27% and 57%, respectively.

4.
Protein Sci ; 31(8): e4367, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35900024

RESUMO

Mouse double minute 2 homolog (MDM2) is an E3 ubiquitin-protein ligase that is involved in the transfer of ubiquitin to p53 and other protein substrates. The expression of MDM2 is elevated in cancer cells and inhibitors of MDM2 showed potent anticancer activities. Many inhibitors target the p53 binding domain of MDM2. However, inhibitors such as Inulanolide A and MA242 are found to bind the RING domain of MDM2 to block ubiquitin transfer. In this report, crystal structures of MDM2 RING domain in complex with Inulanolide A and MA242 were solved. These inhibitors primarily bind in a hydrophobic site centered at the sidechain of Tyr489 at the C-terminus of MDM2 RING domain. The C-terminus of MDM2 RING domain, especially residue Tyr489, is required for ubiquitin discharge induced by MDM2. The binding of these inhibitors at Tyr489 may interrupt interactions between the MDM2 RING domain and the E2-Ubiquitin complex to inhibit ubiquitin transfer, regardless of what the substrate is. Our results suggest a new mechanism of inhibition of MDM2 E3 activity for a broad spectrum of substrates.


Assuntos
Proteínas Proto-Oncogênicas c-mdm2 , Proteína Supressora de Tumor p53 , Animais , Camundongos , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo , Ubiquitina/química , Ubiquitina-Proteína Ligases/metabolismo
5.
Sci Adv ; 8(3): eabj8357, 2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35061527

RESUMO

The production of noncanonical mRNA transcripts is associated with cell transformation. Driven by our previous findings on the sensitivity of T cell acute lymphoblastic leukemia (T-ALL) cells to SF3B1 inhibitors, we identified that SF3B1 inhibition blocks T-ALL growth in vivo with no notable associated toxicity. We also revealed protein stabilization of the U2 complex component SF3B1 via deubiquitination. Our studies showed that SF3B1 inhibition perturbs exon skipping, leading to nonsense-mediated decay and diminished levels of DNA damage response-related transcripts, such as the serine/threonine kinase CHEK2, and impaired DNA damage response. We also identified that SF3B1 inhibition leads to a general decrease in R-loop formation. We further demonstrate that clinically used SF3B1 inhibitors synergize with CHEK2 inhibitors and chemotherapeutic drugs to block leukemia growth. Our study provides the proof of principle for posttranslational regulation of splicing components and associated roles and therapeutic implications for the U2 complex in T cell leukemia.


Assuntos
Leucemia de Células T , Leucemia-Linfoma Linfoblástico de Células T Precursoras , Homeostase , Humanos , Mutação , Fosfoproteínas/metabolismo , Leucemia-Linfoma Linfoblástico de Células T Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células T Precursoras/genética , Fatores de Processamento de RNA/genética , Fatores de Processamento de RNA/metabolismo
6.
Cancers (Basel) ; 15(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36612049

RESUMO

Colorectal cancer (CRC) is the second leading cause of death worldwide, with 0.9 million deaths per year. The metastatic stage of the disease is identified in about 20% of cases at the first diagnosis and is associated with low patient-survival rates. Voltage-gated sodium channels (NaV) are abnormally overexpressed in several carcinomas including CRC and are strongly associated with the metastatic behavior of cancer cells. Acidification of the extracellular space by Na+/H+ exchangers (NHE) contributes to extracellular matrix degradation and cell invasiveness. In this study, we assessed the expression levels of pore-forming α-subunits of NaV channels and NHE exchangers in tumor and adjacent non-malignant tissues from colorectal cancer patients, CRC cell lines and primary tumor cells. In all cases, SCN5A (gene encoding for NaV1.5) was overexpressed and positively correlated with cancer stage and poor survival prognosis for patients. In addition, we identified an anatomical differential expression of SCN5A and SLC9A1 (gene encoding for NHE-1) being particularly relevant for tumors that originated on the sigmoid colon epithelium. The functional activity of NaV1.5 channels was characterized in CRC cell lines and the primary cells of colon tumors obtained using tumor explant methodologies. Furthermore, we assessed the performance of two new small-molecule NaV1.5 inhibitors on the reduction of sodium currents, as well as showed that silencing SCN5A and SLC9A1 substantially reduced the 2D invasive capabilities of cancer cells. Thus, our findings show that both NaV1.5 and NHE-1 represent two promising targetable membrane proteins against the metastatic progression of CRC.

7.
Oncotarget ; 12(8): 740-755, 2021 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-33889298

RESUMO

Additional prognostic and therapeutic biomarkers effective across different histological types of sarcoma are needed. Herein we evaluate expression of TAZ and YAP, the p53-MDM2 axis, and RABL6A, a novel oncoprotein with potential ties to both pathways, in sarcomas of different histological types. Immunohistochemical staining of a tissue microarray including 163 sarcomas and correlation with clinical data showed that elevated YAP and TAZ independently predict worse overall and progression-free survival, respectively. In the absence of p53 expression, combined TAZ and YAP expression adversely affect overall, progression free, and metastasis free survival more than TAZ or YAP activation alone. RABL6A independently predicted shorter time to metastasis and was positively correlated with p53, MDM2 and YAP expression, supporting a possible functional relationship between the biomarkers. Network analysis further showed that TAZ is positively correlated with MDM2 expression. The data implicate all five proteins as clinically relevant downstream players in the Hippo pathway. Finally, a novel inhibitor of MDM2 (MA242), effectively suppressed the survival of sarcoma cell lines from different histological types regardless of p53 status. These findings suggest both independent and cooperative roles for all five biomarkers across different histological types of sarcoma in predicting patient outcomes and potentially guiding future therapeutic approaches.

8.
iScience ; 24(4): 102270, 2021 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-33817575

RESUMO

Voltage-gated sodium (NaV) channels, initially characterized in excitable cells, have been shown to be aberrantly expressed in non-excitable cancer tissues and cells from epithelial origins such as in breast, lung, prostate, colon, and cervix, whereas they are not expressed in cognate non-cancer tissues. Their activity was demonstrated to promote aggressive and invasive potencies of cancer cells, both in vitro and in vivo, whereas their deregulated expression in cancer tissues has been associated with metastatic progression and cancer-related death. This review proposes NaV channels as pharmacological targets for anticancer treatments providing opportunities for repurposing existing NaV-inhibitors or developing new pharmacological and nutritional interventions.

9.
PLoS Biol ; 19(2): e3001097, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33596193

RESUMO

The oncogenic human herpesviruses Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV) are the causative agents of multiple malignancies. A hallmark of herpesviruses is their biphasic life cycle consisting of latent and lytic infection. In this study, we identified that cellular nonsense-mediated decay (NMD), an evolutionarily conserved RNA degradation pathway, critically regulates the latent-to-lytic switch of EBV and KSHV infection. The NMD machinery suppresses EBV and KSHV Rta transactivator expression and promotes maintenance of viral latency by targeting the viral polycistronic transactivator transcripts for degradation through the recognition of features in their 3' UTRs. Treatment with a small-molecule NMD inhibitor potently induced reactivation in a variety of EBV- and KSHV-infected cell types. In conclusion, our results identify NMD as an important host process that controls oncogenic herpesvirus reactivation, which may be targeted for the therapeutic induction of lytic reactivation and the eradication of tumor cells.


Assuntos
Herpesvirus Humano 4/fisiologia , Herpesvirus Humano 8/fisiologia , Degradação do RNAm Mediada por Códon sem Sentido , Transativadores/fisiologia , Linhagem Celular Transformada , Linhagem Celular Tumoral , Infecções por Vírus Epstein-Barr/virologia , Regulação Viral da Expressão Gênica , Células HEK293 , Herpesvirus Humano 4/genética , Herpesvirus Humano 8/genética , Humanos , RNA Viral , Sarcoma de Kaposi/virologia , Transativadores/genética , Latência Viral/genética
10.
ACS Med Chem Lett ; 12(1): 48-55, 2021 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-33488963

RESUMO

Dental caries is a bacterial infectious disease characterized by demineralization of the tooth enamel. Treatment of this disease with conventional antibiotics is largely ineffective as the cariogenic bacteria form tenacious biofilms that are resistant to such treatments. The main etiological agent for dental caries is the bacterium Streptococcus mutans. S. mutans readily forms biofilms on the tooth surface and rapidly produces lactic acid from dietary sucrose. Glucosyl transferases (Gtfs) secreted by S. mutans are mainly responsible for the production of exopolysaccharides that are crucial for the biofilm architecture. Thus, inhibiting S. mutans' Gtfs is an effective approach to develop selective biofilm inhibitors that do not affect the growth of oral commensals. Herein, we report a library of 90 analogs of the previously identified lead compound, G43, and exploration of its structure activity relationships (SAR). All compounds were evaluated for the inhibition of S. mutans biofilms and bacterial growth. Selected compounds from this library were further evaluated for enzyme inhibition against Gtfs using a zymogram assay and for growth inhibition against oral commensal bacterial species such as Streptococcus gordonii and Streptococcus sanguinis. This study has led to the discovery of several new biofilm inhibitors with enhanced potency and selectivity. One of the leads, III F1 , showed marked reduction in buccal, sulcal, and proximal caries scores in a rat model of dental caries.

11.
ACS Appl Bio Mater ; 4(8): 6244-6255, 2021 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-35006910

RESUMO

Brain-derived neurotrophic factor (BDNF) and its receptor tyrosine receptor kinase B (TrkB) have been shown to play an important role in numerous neurological disorders, such as Alzheimer's disease. The identification of biologically active compounds interacting with TrkB serves as a drug discovery strategy to identify drug leads for neurological disorders. Here, we report effective immobilization of functional TrkB on magnetic iron oxide nanoclusters, where TrkB receptors behave as "smart baits" to bind compounds from mixtures and magnetic nanoclusters enable rapid isolation through magnetic separation. The presence of the immobilized TrkB was confirmed by specific antibody labeling. Subsequently, the activity of the TrkB on iron oxide nanoclusters was evaluated with ATP/ADP conversion experiments using a known TrkB agonist. The immobilized TrkB receptors can effectively identify binders from mixtures containing known binders, synthetic small molecule mixtures, and Gotu Kola (Centella asiatica) plant extracts. The identified compounds were analyzed by an ultrahigh-performance liquid chromatography system coupled with a quadrupole time-of-flight mass spectrometer. Importantly, some of the identified TrkB binders from Gotu Kola plant extracts matched with compounds previously linked to neuroprotective effects observed for a Gotu Kola extract approved for use in a clinical trial. Our studies suggest that the possible therapeutic effects of the Gotu Kola plant extract in dementia treatment, at least partially, might be associated with compounds interacting with TrkB. The unique feature of this approach is its ability to fast screen potential drug leads using less explored transmembrane targets. This platform works as a drug-screening funnel at early stages of the drug discovery pipeline. Therefore, our approach will not only greatly benefit drug discovery processes using transmembrane proteins as targets but also allow for evaluation and validation of cellular pathways targeted by drug leads.


Assuntos
Centella , Avaliação Pré-Clínica de Medicamentos , Fenômenos Magnéticos , Extratos Vegetais , Receptores Proteína Tirosina Quinases
12.
Molecules ; 25(21)2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114525

RESUMO

In an effort to discover viable systemic chemotherapeutic agents for neuroendocrine tumors (NETs), we screened a small library of 18 drug-like compounds obtained from the Velu lab against pulmonary (H727) and thyroid (MZ-CRC-1 and TT) neuroendocrine tumor-derived cell lines. Two potent lead compounds (DHN-II-84 and DHN-III-14) identified from this screening were found to be analogs of the natural product makaluvamine. We further characterized the antitumor activities of these two compounds using pulmonary (H727), thyroid (MZ-CRC-1) and pancreatic (BON) neuroendocrine tumor cell lines. Flow cytometry showed a dose-dependent increase in apoptosis in all cell lines. Induction of apoptosis with these compounds was also supported by the decrease in myeloid cell leukemia-1 (MCL-1) and X-chromosome linked inhibitor of apoptosis (XIAP) detected by Western blot. Compound treatment decreased NET markers chromogranin A (CgA) and achaete-scute homolog 1 (ASCL1) in a dose-dependent manner. Moreover, the gene expression analysis showed that the compound treatment reduced c-Kit proto-oncogene expression in the NET cell lines. Induction of apoptosis could also have been caused by the inhibition of c-Kit expression, in addition to the known mechanisms such as damage of DNA by topoisomerase II inhibition for this class of compounds. In summary, makaluvamine analogs DHN-II-84 and DHN-III-14 induced apoptosis, decreased neuroendocrine tumor markers, and showed promising antitumor activity in pulmonary, thyroid, and pancreatic NET cell lines, and hold potential to be developed as an effective treatment to combat neuroendocrine tumors.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Tumores Neuroendócrinos/patologia , Proteínas Proto-Oncogênicas c-kit/genética , Pirróis/química , Pirróis/farmacologia , Apoptose/efeitos dos fármacos , Biomarcadores Tumorais/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Humanos , Proto-Oncogene Mas
13.
Mar Drugs ; 17(8)2019 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-31357586

RESUMO

Non-melanoma skin cancer is one of the major ailments in the United States. Effective drugs that can cure skin cancers are limited. Moreover, the available drugs have toxic side effects. Therefore, skin cancer drugs with less toxic side effects are urgently needed. To achieve this goal, we focused our work on identifying potent lead compounds from marine natural products. Five lead compounds identified from a class of pyrroloiminoquinone natural products were evaluated for their ability to selectively kill squamous cell carcinoma (SCC13) skin cancer cells using an MTT assay. The toxicity of these compounds was also evaluated against the normal human keratinocyte HaCaT cell line. The most potent compound identified from these studies, C278 was further evaluated for its ability to inhibit cancer cell migration and invasion using a wound-healing assay and a trans-well migration assay, respectively. To investigate the molecular mechanism of cell death, the expression of apoptotic and autophagy proteins was studied in C278 treated cells compared to untreated cells using western blot. Our results showed that all five compounds effectively killed the SCC13 cells, with compound C278 being the most effective. Compound C278 was more effective in killing the SCC13 cells compared to HaCaT cells with a two-fold selectivity. The migration and the invasion of the SCC13 cells were also inhibited upon treatment with compound C278. The expression of pro-apoptotic and autophagy proteins with concomitant downregulation in the expression of survival proteins were observed in C278 treated cells. In summary, the marine natural product analog compound C278 showed promising anticancer activity against human skin cancer cells and holds potential to be developed as an effective anticancer agent to combat skin cancer.


Assuntos
Organismos Aquáticos/química , Produtos Biológicos/farmacologia , Pirroliminoquinonas/farmacologia , Neoplasias Cutâneas/tratamento farmacológico , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Carcinoma de Células Escamosas/tratamento farmacológico , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Chalconas/farmacologia , Regulação para Baixo/efeitos dos fármacos , Humanos , Queratinócitos/efeitos dos fármacos , Pele/diagnóstico por imagem
14.
Cancer Lett ; 459: 156-167, 2019 09 10.
Artigo em Inglês | MEDLINE | ID: mdl-31181320

RESUMO

The overexpression of the MDM2 oncoprotein frequently occurs in hepatocellular carcinoma (HCC). Small molecules that inhibit MDM2-p53 binding show efficacy against p53 wild-type HCC, but most patients have p53-mutant tumors and intrinsic resistance to such MDM2 inhibitors. We have recently discovered that the NFAT1 transcription factor upregulates MDM2 expression, but the role of NFAT1 in HCC is not fully understood. The present study was designed to develop a dual-targeting (MDM2 and NFAT1) strategy for the treatment of HCC. We herein demonstrate that high expression levels of NFAT1 and MDM2 are independent predictors of a poor prognosis in patients with HCC. We have also identified a MDM2 and NFAT1 dual inhibitor (termed MA242) that induces MDM2 auto-ubiquitination and degradation and represses NFAT1-mediated MDM2 transcription. MA242 profoundly inhibits the growth and metastasis of HCC cells in vitro and in vivo, independent of p53. The present efficacy and mechanistic studies provide proof-of-principle data to support the therapeutic value of this dual targeting strategy in future drug discovery.


Assuntos
Carcinoma Hepatocelular/tratamento farmacológico , Compostos Heterocíclicos com 3 Anéis/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Fatores de Transcrição NFATC/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Movimento Celular , Feminino , Células Hep G2 , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade , Modelos Moleculares , Fatores de Transcrição NFATC/biossíntese , Fatores de Transcrição NFATC/metabolismo , Invasividade Neoplásica , Prognóstico , Proteínas Proto-Oncogênicas c-mdm2/biossíntese , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Transdução de Sinais/efeitos dos fármacos , Proteína Supressora de Tumor p53 , Ubiquitinação , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Cancer Res ; 78(19): 5656-5667, 2018 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-30217928

RESUMO

Overexpression and activation of the murine double minute 2 (MDM2) or nuclear factor of activated T cells 1 (NFAT1) oncoproteins frequently occur in pancreatic cancer. Most MDM2 inhibitors under development target MDM2-p53 binding and have little or no effect on cancers without functional p53, including pancreatic cancer. Some available compounds indirectly inhibit NFAT1 activity by interfering with calcineurin activity, but there are currently no specific inhibitors against NFAT1. Here we performed a high-throughput virtual and cell-based screening to yield a lead compound (MA242) that can directly bind both MDM2 and NFAT1 with high affinity, induce their protein degradation, and inhibit NFAT1-mediated transcription of MDM2 As a result of this binding, MA242 decreased cell proliferation and induced apoptosis in pancreatic cancer cell lines regardless of p53 status. MA242 alone or in combination with gemcitabine inhibited pancreatic tumor growth and metastasis without any host toxicity. Our data indicate that targeting both MDM2 and NFAT1 represents a novel and effective strategy to treat pancreatic cancer.Significance: These findings suggest that pharmacological inhibition of both MDM2 and NFAT1 is a promising strategy for the treatment of pancreatic cancer, even in tumors lacking functional p53. Cancer Res; 78(19); 5656-67. ©2018 AACR.


Assuntos
Antineoplásicos/farmacologia , Regulação Neoplásica da Expressão Gênica , Compostos Heterocíclicos com 3 Anéis/farmacologia , Fatores de Transcrição NFATC/antagonistas & inibidores , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Animais , Apoptose , Calcineurina/metabolismo , Linhagem Celular Tumoral , Proliferação de Células , Desoxicitidina/análogos & derivados , Desoxicitidina/farmacologia , Descoberta de Drogas , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Camundongos , Camundongos Nus , Transplante de Neoplasias , Ligação Proteica , RNA Interferente Pequeno/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Gencitabina
16.
ACS Omega ; 3(7): 8378-8385, 2018 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-30087944

RESUMO

Removal of oral biofilms involves the use of broad-spectrum antimicrobials, which eradicate both pathogenic and protective oral commensal species. Ideal therapeutics for dental caries should be able to selectively inhibit pathogenic biofilms caused by Streptococcus mutans. S. mutans extracellular glucosyltransferases (Gtfs), particularly GtfB and GtfC, synthesize predominantly water-insoluble glucans, which contribute to the structural scaffold of biofilms. The lead stilbene identified through our docking study against the catalytic domain of GtfC is a natural product known as piceatannol, which inhibited S. mutans biofilm formation in a dose-dependent manner, with considerable selectivity over growth inhibition of S. mutans and commensal streptococci. Binding kinetic analysis of piceatannol was performed using Octet RED against both GtfB and GtfC, which produced low micromolar KD values. Piceatannol inhibited S. mutans colonization in an in vivo drosophila model and a rat model of dental caries.

17.
Clin Cancer Res ; 24(24): 6433-6446, 2018 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-30108105

RESUMO

PURPOSE: Elevation of L-2-hydroxylgutarate (L-2-HG) in renal cell carcinoma (RCC) is due in part to reduced expression of L-2-HG dehydrogenase (L2HGDH). However, the contribution of L-2-HG to renal carcinogenesis and insight into the biochemistry and targets of this small molecule remains to be elucidated. EXPERIMENTAL DESIGN: Genetic and pharmacologic approaches to modulate L-2-HG levels were assessed for effects on in vitro and in vivo phenotypes. Metabolomics was used to dissect the biochemical mechanisms that promote L-2-HG accumulation in RCC cells. Transcriptomic analysis was utilized to identify relevant targets of L-2-HG. Finally, bioinformatic and metabolomic analyses were used to assess the L-2-HG/L2HGDH axis as a function of patient outcome and cancer progression. RESULTS: L2HGDH suppresses both in vitro cell migration and in vivo tumor growth and these effects are mediated by L2HGDH's catalytic activity. Biochemical studies indicate that glutamine is the predominant carbon source for L-2-HG via the activity of malate dehydrogenase 2 (MDH2). Inhibition of the glutamine-MDH2 axis suppresses in vitro phenotypes in an L-2-HG-dependent manner. Moreover, in vivo growth of RCC cells with basal elevation of L-2-HG is suppressed by glutaminase inhibition. Transcriptomic and functional analyses demonstrate that the histone demethylase KDM6A is a target of L-2-HG in RCC. Finally, increased L-2-HG levels, L2HGDH copy loss, and lower L2HGDH expression are associated with tumor progression and/or worsened prognosis in patients with RCC. CONCLUSIONS: Collectively, our studies provide biochemical and mechanistic insight into the biology of this small molecule and provide new opportunities for treating L-2-HG-driven kidney cancers.


Assuntos
Oxirredutases do Álcool/genética , Oxirredutases do Álcool/metabolismo , Epigênese Genética , Glutaratos/metabolismo , Neoplasias Renais/genética , Neoplasias Renais/metabolismo , Oxirredutases do Álcool/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Linhagem Celular Tumoral , Movimento Celular/genética , Modelos Animais de Doenças , Expressão Gênica , Técnicas de Silenciamento de Genes , Histonas/metabolismo , Humanos , Neoplasias Renais/tratamento farmacológico , Neoplasias Renais/patologia , Metilação , Terapia de Alvo Molecular , Fenótipo , RNA Interferente Pequeno/genética , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Tetrahedron Lett ; 59(6): 550-553, 2018 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-29736091

RESUMO

Murrayaquinones A-D is a group of four bioactive carbazole-1,4-dione natural products isolated from the root bark of the plant Murraya eucrestifolia hayata. Murrayaquinone is synthesized in five steps starting from the commercially available 2,4,5-trimethoxybenzaldehyde with an overall yield of 45%. The novelty of this murrayaquinone synthesis is in the use of a Mn(OAc)3 mediated oxidative radical reaction of a N-benzylaminoquinone derivative with 2-cyclohexen-1-one for the late-stage indole ring construction.

19.
Bioorg Med Chem ; 26(9): 2428-2436, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29673714

RESUMO

Voltage-gated sodium channels (VGSC) are a well-established drug target for anti-epileptic, anti-arrhythmic and pain medications due to their presence and the important roles that they play in excitable cells. Recently, their presence has been recognized in non-excitable cells such as cancer cells and their overexpression has been shown to be associated with metastatic behavior in a variety of human cancers. The neonatal isoform of the VGSC subtype, Nav1.5 (nNav1.5) is overexpressed in the highly aggressive human breast cancer cell line, MDA-MB-231. The activity of nNav1.5 is known to promote the breast cancer cell invasion in vitro and metastasis in vivo, and its expression in primary mammary tumors has been associated with metastasis and patient death. Metastasis development is responsible for the high mortality of breast cancer and currently there is no treatment available to specifically prevent or inhibit breast cancer metastasis. In the present study, a 3D-QSAR model is used to assist the development of low micromolar small molecule VGSC blockers. Using this model, we have designed, synthesized and evaluated five small molecule compounds as blockers of nNav1.5-dependent inward currents in whole-cell patch-clamp experiments in MDA-MB-231 cells. The most active compound identified from these studies blocked sodium currents by 34.9 ±â€¯6.6% at 1 µM. This compound also inhibited the invasion of MDA-MB-231 cells by 30.3 ±â€¯4.5% at 1 µM concentration without affecting the cell viability. The potent small molecule compounds presented here have the potential to be developed as drugs for breast cancer metastasis treatment.


Assuntos
Antineoplásicos/farmacologia , Canal de Sódio Disparado por Voltagem NAV1.5/metabolismo , Invasividade Neoplásica/prevenção & controle , Bloqueadores do Canal de Sódio Disparado por Voltagem/farmacologia , Antineoplásicos/síntese química , Antineoplásicos/química , Neoplasias da Mama/tratamento farmacológico , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Desenho de Fármacos , Humanos , Metástase Neoplásica/prevenção & controle , Relação Quantitativa Estrutura-Atividade , Bloqueadores do Canal de Sódio Disparado por Voltagem/síntese química , Bloqueadores do Canal de Sódio Disparado por Voltagem/química
20.
Sci Rep ; 7(1): 5974, 2017 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-28729722

RESUMO

Streptococcus mutans employs a key virulence factor, three glucosyltransferase (GtfBCD) enzymes to establish cariogenic biofilms. Therefore, the inhibition of GtfBCD would provide anti-virulence therapeutics. Here a small molecule library of 500,000 small molecule compounds was screened in silico against the available crystal structure of the GtfC catalytic domain. Based on the predicted binding affinities and drug-like properties, small molecules were selected and evaluated for their ability to reduce S. mutans biofilms, as well as inhibit the activity of Gtfs. The most potent inhibitor was further characterized for Gtf binding using OctetRed instrument, which yielded low micromolar KD against GtfB and nanomolar KD against GtfC, demonstrating selectivity towards GtfC. Additionally, the lead compound did not affect the overall growth of S. mutans and commensal oral bacteria, and selectively inhibit the biofilm formation by S. mutans, indicative of its selectivity and non-bactericidal nature. The lead compound also effectively reduced cariogenicity in vivo in a rat model of dental caries. An analog that docked poorly in the GtfC catalytic domain failed to inhibit the activity of Gtfs and S. mutans biofilms, signifying the specificity of the lead compound. This report illustrates the validity and potential of structure-based design of anti-S. mutans virulence inhibitors.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Cárie Dentária/microbiologia , Bibliotecas de Moléculas Pequenas/química , Bibliotecas de Moléculas Pequenas/farmacologia , Benzamidas/farmacologia , Biofilmes/efeitos dos fármacos , Avaliação Pré-Clínica de Medicamentos , Glucosiltransferases/antagonistas & inibidores , Glucosiltransferases/metabolismo , Cinética , Viabilidade Microbiana/efeitos dos fármacos , Boca/microbiologia , Mutação/genética , Streptococcus mutans/efeitos dos fármacos , Streptococcus mutans/crescimento & desenvolvimento , Streptococcus mutans/patogenicidade , Streptococcus mutans/fisiologia , Relação Estrutura-Atividade , Virulência/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...