Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Cell Stem Cell ; 31(1): 127-147.e9, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38141611

RESUMO

Our understanding of pluripotency remains limited: iPSC generation has only been established for a few model species, pluripotent stem cell lines exhibit inconsistent developmental potential, and germline transmission has only been demonstrated for mice and rats. By swapping structural elements between Sox2 and Sox17, we built a chimeric super-SOX factor, Sox2-17, that enhanced iPSC generation in five tested species: mouse, human, cynomolgus monkey, cow, and pig. A swap of alanine to valine at the interface between Sox2 and Oct4 delivered a gain of function by stabilizing Sox2/Oct4 dimerization on DNA, enabling generation of high-quality OSKM iPSCs capable of supporting the development of healthy all-iPSC mice. Sox2/Oct4 dimerization emerged as the core driver of naive pluripotency with its levels diminished upon priming. Transient overexpression of the SK cocktail (Sox+Klf4) restored the dimerization and boosted the developmental potential of pluripotent stem cells across species, providing a universal method for naive reset in mammals.


Assuntos
Células-Tronco Pluripotentes Induzidas , Células-Tronco Pluripotentes , Humanos , Camundongos , Ratos , Animais , Suínos , Macaca fascicularis/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Células-Tronco Pluripotentes/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Reprogramação Celular , Fatores de Transcrição SOXB1/metabolismo , Diferenciação Celular , Mamíferos/metabolismo
2.
Nat Struct Mol Biol ; 30(7): 991-1000, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37430065

RESUMO

Enhancer-mediated gene activation generally requires physical proximity between enhancers and their target gene promoters. However, the molecular mechanisms by which interactions between enhancers and promoters are formed are not well understood. Here, we investigate the function of the Mediator complex in the regulation of enhancer-promoter interactions, by combining rapid protein depletion and high-resolution MNase-based chromosome conformation capture approaches. We show that depletion of Mediator leads to reduced enhancer-promoter interaction frequencies, which are associated with a strong decrease in gene expression. In addition, we find increased interactions between CTCF-binding sites upon Mediator depletion. These changes in chromatin architecture are associated with a redistribution of the Cohesin complex on chromatin and a reduction in Cohesin occupancy at enhancers. Together, our results indicate that the Mediator and Cohesin complexes contribute to enhancer-promoter interactions and provide insights into the molecular mechanisms by which communication between enhancers and promoters is regulated.


Assuntos
Elementos Facilitadores Genéticos , Complexo Mediador , Complexo Mediador/genética , Complexo Mediador/metabolismo , Elementos Facilitadores Genéticos/genética , Cromatina , Regiões Promotoras Genéticas , Sítios de Ligação , Proteínas de Ciclo Celular/metabolismo , Fator de Ligação a CCCTC/genética , Fator de Ligação a CCCTC/metabolismo
4.
Mol Cell ; 83(11): 1798-1809.e7, 2023 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-37148879

RESUMO

At active human genes, the +1 nucleosome is located downstream of the RNA polymerase II (RNA Pol II) pre-initiation complex (PIC). However, at inactive genes, the +1 nucleosome is found further upstream, at a promoter-proximal location. Here, we establish a model system to show that a promoter-proximal +1 nucleosome can reduce RNA synthesis in vivo and in vitro, and we analyze its structural basis. We find that the PIC assembles normally when the edge of the +1 nucleosome is located 18 base pairs (bp) downstream of the transcription start site (TSS). However, when the nucleosome edge is located further upstream, only 10 bp downstream of the TSS, the PIC adopts an inhibited state. The transcription factor IIH (TFIIH) shows a closed conformation and its subunit XPB contacts DNA with only one of its two ATPase lobes, inconsistent with DNA opening. These results provide a mechanism for nucleosome-dependent regulation of transcription initiation.


Assuntos
Nucleossomos , RNA Polimerase II , Humanos , Nucleossomos/genética , RNA Polimerase II/metabolismo , Regiões Promotoras Genéticas , Fator de Transcrição TFIIH/metabolismo , DNA/genética , DNA/química , Transcrição Gênica , Sítio de Iniciação de Transcrição
5.
Elife ; 112022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35621159

RESUMO

The transcription factor Oct4 is essential for the maintenance and induction of stem cell pluripotency, but its functional roles are not fully understood. Here, we investigate the functions of Oct4 by depleting and subsequently recovering it in mouse embryonic stem cells (ESCs) and conducting a time-resolved multiomics analysis. Oct4 depletion leads to an immediate loss of its binding to enhancers, accompanied by a decrease in mRNA synthesis from its target genes that are part of the transcriptional network that maintains pluripotency. Gradual decrease of Oct4 binding to enhancers does not immediately change the chromatin accessibility but reduces transcription of enhancers. Conversely, partial recovery of Oct4 expression results in a rapid increase in chromatin accessibility, whereas enhancer transcription does not fully recover. These results indicate different concentration-dependent activities of Oct4. Whereas normal ESC levels of Oct4 are required for transcription of pluripotency enhancers, low levels of Oct4 are sufficient to retain chromatin accessibility, likely together with other factors such as Sox2.


Assuntos
Cromatina , Células-Tronco Pluripotentes , Animais , Cromatina/metabolismo , Redes Reguladoras de Genes , Camundongos , Células-Tronco Embrionárias Murinas/metabolismo , Células-Tronco Pluripotentes/metabolismo , Transcrição Gênica
6.
Nat Protoc ; 17(2): 445-475, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35121852

RESUMO

Chromosome conformation capture (3C) methods measure the spatial proximity between DNA elements in the cell nucleus. Many methods have been developed to sample 3C material, including the Capture-C family of protocols. Capture-C methods use oligonucleotides to enrich for interactions of interest from sequencing-ready 3C libraries. This approach is modular and has been adapted and optimized to work for sampling of disperse DNA elements (NuTi Capture-C), including from low cell inputs (LI Capture-C), as well as to generate Hi-C like maps for specific regions of interest (Tiled-C) and to interrogate multiway interactions (Tri-C). We present the design, experimental protocol and analysis pipeline for NuTi Capture-C in addition to the variations for generation of LI Capture-C, Tiled-C and Tri-C data. The entire procedure can be performed in 3 weeks and requires standard molecular biology skills and equipment, access to a next-generation sequencing platform, and basic bioinformatic skills. Implemented with other sequencing technologies, these methods can be used to identify regulatory interactions and to compare the structural organization of the genome in different cell types and genetic models.


Assuntos
Cromossomos
7.
Cell Death Dis ; 12(12): 1118, 2021 11 29.
Artigo em Inglês | MEDLINE | ID: mdl-34845197

RESUMO

Breast cancer (BC) is the most common cancer occurring in women but also rarely develops in men. Recent advances in early diagnosis and development of targeted therapies have greatly improved the survival rate of BC patients. However, the basal-like BC subtype (BLBC), largely overlapping with the triple-negative BC subtype (TNBC), lacks such drug targets and conventional cytotoxic chemotherapies often remain the only treatment option. Thus, the development of resistance to cytotoxic therapies has fatal consequences. To assess the involvement of epigenetic mechanisms and their therapeutic potential increasing cytotoxic drug efficiency, we combined high-throughput RNA- and ChIP-sequencing analyses in BLBC cells. Tumor cells surviving chemotherapy upregulated transcriptional programs of epithelial-to-mesenchymal transition (EMT) and stemness. To our surprise, the same cells showed a pronounced reduction of polycomb repressive complex 2 (PRC2) activity via downregulation of its subunits Ezh2, Suz12, Rbbp7 and Mtf2. Mechanistically, loss of PRC2 activity leads to the de-repression of a set of genes through an epigenetic switch from repressive H3K27me3 to activating H3K27ac mark at regulatory regions. We identified Nfatc1 as an upregulated gene upon loss of PRC2 activity and directly implicated in the transcriptional changes happening upon survival to chemotherapy. Blocking NFATc1 activation reduced epithelial-to-mesenchymal transition, aggressiveness, and therapy resistance of BLBC cells. Our data demonstrate a previously unknown function of PRC2 maintaining low Nfatc1 expression levels and thereby repressing aggressiveness and therapy resistance in BLBC.


Assuntos
Epigênese Genética/genética , Complexo Repressor Polycomb 2/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Feminino , Humanos , Prognóstico , Análise de Sobrevida , Neoplasias de Mama Triplo Negativas/mortalidade
8.
Nucleic Acids Res ; 48(14): 7712-7727, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32805052

RESUMO

Cyclin-dependent kinase 12 (CDK12) phosphorylates the carboxyl-terminal domain (CTD) of RNA polymerase II (pol II) but its roles in transcription beyond the expression of DNA damage response genes remain unclear. Here, we have used TT-seq and mNET-seq to monitor the direct effects of rapid CDK12 inhibition on transcription activity and CTD phosphorylation in human cells. CDK12 inhibition causes a genome-wide defect in transcription elongation and a global reduction of CTD Ser2 and Ser5 phosphorylation. The elongation defect is explained by the loss of the elongation factors LEO1 and CDC73, part of PAF1 complex, and SPT6 from the newly-elongating pol II. Our results indicate that CDK12 is a general activator of pol II transcription elongation and indicate that it targets both Ser2 and Ser5 residues of the pol II CTD.


Assuntos
Quinases Ciclina-Dependentes/fisiologia , RNA Polimerase II/metabolismo , Elongação da Transcrição Genética , Cromatina/metabolismo , Quinases Ciclina-Dependentes/antagonistas & inibidores , Quinases Ciclina-Dependentes/genética , Quinases Ciclina-Dependentes/metabolismo , Células HEK293 , Humanos , Mutação , Fosforilação , RNA/biossíntese , RNA Polimerase II/química , Análise de Sequência de RNA , Serina/metabolismo , Fatores de Elongação da Transcrição/metabolismo
9.
Nat Genet ; 52(7): 719-727, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32483291

RESUMO

The Mediator complex directs signals from DNA-binding transcription factors to RNA polymerase II (Pol II). Despite this pivotal position, mechanistic understanding of Mediator in human cells remains incomplete. Here we quantified Mediator-controlled Pol II kinetics by coupling rapid subunit degradation with orthogonal experimental readouts. In agreement with a model of condensate-driven transcription initiation, large clusters of hypophosphorylated Pol II rapidly disassembled upon Mediator degradation. This was accompanied by a selective and pronounced disruption of cell-type-specifying transcriptional circuits, whose constituent genes featured exceptionally high rates of Pol II turnover. Notably, the transcriptional output of most other genes was largely unaffected by acute Mediator ablation. Maintenance of transcriptional activity at these genes was linked to an unexpected CDK9-dependent compensatory feedback loop that elevated Pol II pause release rates across the genome. Collectively, our work positions human Mediator as a globally acting coactivator that selectively safeguards the functionality of cell-type-specifying transcriptional networks.


Assuntos
Regulação da Expressão Gênica , Complexo Mediador/fisiologia , Transcrição Gênica , Animais , Linhagem Celular Tumoral , Cromatina/fisiologia , Drosophila , Perfilação da Expressão Gênica , Técnicas de Introdução de Genes , Humanos , Complexo Mediador/genética , Fator B de Elongação Transcricional Positiva/metabolismo , RNA Polimerase II/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...