Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Cell Rep ; 43(3): 113862, 2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38446664

RESUMO

Brain functionality relies on finely tuned regulation of gene expression by networks of non-coding RNAs (ncRNAs) such as the one composed by the circular RNA ciRS-7 (also known as CDR1as), the microRNA miR-7, and the long ncRNA Cyrano. We describe ischemia-induced alterations in the ncRNA network both in vitro and in vivo and in transgenic mice lacking ciRS-7 or miR-7. Our data show that cortical neurons downregulate ciRS-7 and Cyrano and upregulate miR-7 expression during ischemia. Mice lacking ciRS-7 exhibit reduced lesion size and motor impairment, while the absence of miR-7 alone results in increased ischemia-induced neuronal death. Moreover, miR-7 levels in pyramidal excitatory neurons regulate neurite morphology and glutamatergic signaling, suggesting a potential molecular link to the in vivo phenotype. Our data reveal the role of ciRS-7 and miR-7 in modulating ischemic stroke outcome, shedding light on the pathophysiological function of intracellular ncRNA networks in the brain.


Assuntos
MicroRNAs , RNA Longo não Codificante , Camundongos , Animais , MicroRNAs/genética , MicroRNAs/metabolismo , RNA não Traduzido , RNA Circular , Transdução de Sinais , RNA Longo não Codificante/metabolismo , Isquemia
2.
Brain Commun ; 6(1): fcad355, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38204971

RESUMO

MicroRNAs have emerged as important regulators of the gene expression landscape in temporal lobe epilepsy. The mechanisms that control microRNA levels and influence target choice remain, however, poorly understood. RNA editing is a post-transcriptional mechanism mediated by the adenosine acting on RNA (ADAR) family of proteins that introduces base modification that diversifies the gene expression landscape. RNA editing has been studied for the mRNA landscape but the extent to which microRNA editing occurs in human temporal lobe epilepsy is unknown. Here, we used small RNA-sequencing data to characterize the identity and extent of microRNA editing in human temporal lobe epilepsy brain samples. This detected low-to-high editing in over 40 of the identified microRNAs. Among microRNA exhibiting the highest editing was miR-376a-3p, which was edited in the seed region and this was predicted to significantly change the target pool. The edited form was expressed at lower levels in human temporal lobe epilepsy samples. We modelled the shift in editing levels of miR-376a-3p in human-induced pluripotent stem cell-derived neurons. Reducing levels of the edited form of miR-376a-3p using antisense oligonucleotides resulted in extensive gene expression changes, including upregulation of mitochondrial and metabolism-associated pathways. Together, these results show that differential editing of microRNAs may re-direct targeting and result in altered functions relevant to the pathophysiology of temporal lobe epilepsy and perhaps other disorders of neuronal hyperexcitability.

3.
Front Mol Neurosci ; 16: 1230942, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37808470

RESUMO

The diagnosis of epilepsy is complex and challenging and would benefit from the availability of molecular biomarkers, ideally measurable in a biofluid such as blood. Experimental and human epilepsy are associated with altered brain and blood levels of various microRNAs (miRNAs). Evidence is lacking, however, as to whether any of the circulating pool of miRNAs originates from the brain. To explore the link between circulating miRNAs and the pathophysiology of epilepsy, we first sequenced argonaute 2 (Ago2)-bound miRNAs in plasma samples collected from mice subject to status epilepticus induced by intraamygdala microinjection of kainic acid. This identified time-dependent changes in plasma levels of miRNAs with known neuronal and microglial-cell origins. To explore whether the circulating miRNAs had originated from the brain, we generated mice expressing FLAG-Ago2 in neurons or microglia using tamoxifen-inducible Thy1 or Cx3cr1 promoters, respectively. FLAG immunoprecipitates from the plasma of these mice after seizures contained miRNAs, including let-7i-5p and miR-19b-3p. Taken together, these studies confirm that a portion of the circulating pool of miRNAs in experimental epilepsy originates from the brain, increasing support for miRNAs as mechanistic biomarkers of epilepsy.

4.
Proc Natl Acad Sci U S A ; 120(30): e2216658120, 2023 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-37463203

RESUMO

There remains an urgent need for new therapies for treatment-resistant epilepsy. Sodium channel blockers are effective for seizure control in common forms of epilepsy, but loss of sodium channel function underlies some genetic forms of epilepsy. Approaches that provide bidirectional control of sodium channel expression are needed. MicroRNAs (miRNA) are small noncoding RNAs which negatively regulate gene expression. Here we show that genome-wide miRNA screening of hippocampal tissue from a rat epilepsy model, mice treated with the antiseizure medicine cannabidiol, and plasma from patients with treatment-resistant epilepsy, converge on a single target-miR-335-5p. Pathway analysis on predicted and validated miR-335-5p targets identified multiple voltage-gated sodium channels (VGSCs). Intracerebroventricular injection of antisense oligonucleotides against miR-335-5p resulted in upregulation of Scn1a, Scn2a, and Scn3a in the mouse brain and an increased action potential rising phase and greater excitability of hippocampal pyramidal neurons in brain slice recordings, consistent with VGSCs as functional targets of miR-335-5p. Blocking miR-335-5p also increased voltage-gated sodium currents and SCN1A, SCN2A, and SCN3A expression in human induced pluripotent stem cell-derived neurons. Inhibition of miR-335-5p increased susceptibility to tonic-clonic seizures in the pentylenetetrazol seizure model, whereas adeno-associated virus 9-mediated overexpression of miR-335-5p reduced seizure severity and improved survival. These studies suggest modulation of miR-335-5p may be a means to regulate VGSCs and affect neuronal excitability and seizures. Changes to miR-335-5p may reflect compensatory mechanisms to control excitability and could provide biomarker or therapeutic strategies for different types of treatment-resistant epilepsy.


Assuntos
Epilepsia , Células-Tronco Pluripotentes Induzidas , MicroRNAs , Canais de Sódio Disparados por Voltagem , Humanos , Camundongos , Ratos , Animais , Células-Tronco Pluripotentes Induzidas/metabolismo , Convulsões/induzido quimicamente , Convulsões/genética , Convulsões/metabolismo , MicroRNAs/genética , MicroRNAs/metabolismo , Canais de Sódio Disparados por Voltagem/genética , Canal de Sódio Disparado por Voltagem NAV1.1/genética , Canal de Sódio Disparado por Voltagem NAV1.1/metabolismo , Canal de Sódio Disparado por Voltagem NAV1.3/genética
5.
Nucleic Acid Ther ; 33(1): 45-57, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36445751

RESUMO

Circular RNAs (circRNAs) constitute an abundant class of covalently closed noncoding RNA molecules that are formed by backsplicing from eukaryotic protein-coding genes. Recent studies have shown that circRNAs can act as microRNA or protein decoys, as well as transcriptional regulators. However, the functions of most circRNAs are still poorly understood. Because circRNA sequences overlap with their linear parent transcripts, depleting specific circRNAs without affecting host gene expression remains a challenge. In this study, we assessed the utility of LNA-modified antisense oligonucleotides (ASOs) to knock down circRNAs for loss-of-function studies. We found that, while most RNase H-dependent gapmer ASOs mediate effective knockdown of their target circRNAs, some gapmers reduce the levels of the linear parent transcript. The circRNA targeting specificity can be enhanced using design-optimized gapmer ASOs, which display potent and specific circRNA knockdown with a minimal effect on the host genes. In summary, our results demonstrate that LNA-modified ASOs complementary to backsplice-junction sequences mediate robust knockdown of circRNAs in vitro and, thus, represent a useful tool to explore the biological roles of circRNAs in loss-of-function studies in cultured cells and animal models.


Assuntos
Oligonucleotídeos Antissenso , RNA Circular , Animais , Oligonucleotídeos Antissenso/genética , Oligonucleotídeos Antissenso/metabolismo , RNA Circular/genética , Oligonucleotídeos/genética
6.
Front Mol Neurosci ; 15: 832133, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35310884

RESUMO

Mesial temporal lobe epilepsy (mTLE) is a chronic disease characterized by recurrent seizures that originate in the temporal lobes of the brain. Anti-epileptic drugs (AEDs) are the standard treatment for managing seizures in mTLE patients, but are frequently ineffective. Resective surgery is an option for some patients, but does not guarantee a postoperative seizure-free period. Therefore, further insight is needed into the pathogenesis of mTLE to enable the design of new therapeutic strategies. Circular RNAs (circRNAs) have been identified as important regulators of neuronal function and have been implicated in epilepsy. However, the mechanisms through which circRNAs contribute to epileptogenesis remain unknown. Here, we determine the circRNA transcriptome of the hippocampus and cortex of mTLE patients by using RNA-seq. We report 333 differentially expressed (DE) circRNAs between healthy individuals and mTLE patients, of which 23 circRNAs displayed significant adjusted p-values following multiple testing correction. Interestingly, hippocampal expression of circ_Satb1, a circRNA derived from special AT-rich sequence binding protein 1 (SATB1), is decreased in both mTLE patients and in experimental epilepsy. Our work shows that circ_Satb1 displays dynamic patterns of neuronal expression in vitro and in vivo. Further, circ_Satb1-specific knockdown using CRISPR/CasRx approaches in hippocampal cultures leads to defects in dendritic spine morphology, a cellular hallmark of mTLE. Overall, our results identify a novel epilepsy-associated circRNA with disease-specific expression and previously unidentified cellular effects that are relevant for epileptogenesis.

7.
Methods ; 196: 23-29, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34571139

RESUMO

Circular RNA (circRNA) is a group of highly stable RNA molecules with suggested roles in development and disease. They derive from linear pre-mRNAs when a 5'-splice site splices back to an upstream 3'-splice site in a process termed back-splicing. Most circRNAs are multi-exonic and may contain several thousand nucleotides. The extensive sequence overlap between the linear and circular forms of an RNA means that circRNA identification depends on the detection of back-splice-junction sequence reads that are unique to the circRNA. However, the short-read length obtained using standard next-generation sequencing techniques means that the internal sequence, exon composition and alternative splicing of circRNAs are unknown in many cases. Recently, several labs, including ours, have reported protocols for sequencing of circRNAs using long-read nanopore sequencing and thereby expanded our understanding of circRNA size distribution and internal splicing patterns. Here, we review these protocols and discuss the different approaches taken to study the full length composition of circRNAs.


Assuntos
Sequenciamento por Nanoporos , Nanoporos , RNA/genética , RNA/metabolismo , Sítios de Splice de RNA , Splicing de RNA/genética , RNA Circular/genética
8.
Nat Commun ; 12(1): 4825, 2021 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376658

RESUMO

Circular RNA (circRNA) is a class of covalently joined non-coding RNAs with functional roles in a wide variety of cellular processes. Their composition shows extensive overlap with exons found in linear mRNAs making it difficult to delineate their composition using short-read RNA sequencing, particularly for long and multi-exonic circRNAs. Here, we use long-read nanopore sequencing of nicked circRNAs (circNick-LRS) and characterize a total of 18,266 and 39,623 circRNAs in human and mouse brain, respectively. We further develop an approach for targeted long-read sequencing of a panel of circRNAs (circPanel-LRS), eliminating the need for prior circRNA enrichment and find >30 circRNA isoforms on average per targeted locus. Our data show that circRNAs exhibit a large number of splicing events such as novel exons, intron retention and microexons that preferentially occur in circRNAs. We propose that altered exon usage in circRNAs may reflect resistance to nonsense-mediated decay in the absence of translation.


Assuntos
Encéfalo/metabolismo , Éxons/genética , Íntrons/genética , Sequenciamento por Nanoporos/métodos , RNA Circular/genética , Análise de Sequência de RNA/métodos , Animais , Expressão Gênica , Humanos , Masculino , Camundongos da Linhagem 129 , Isoformas de RNA/genética , Splicing de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Reação em Cadeia da Polimerase Via Transcriptase Reversa
9.
Bioinformatics ; 37(23): 4424-4430, 2021 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-34255836

RESUMO

MOTIVATION: tRNAs were originally considered uni-functional RNA molecules involved in the delivery of amino acids to growing peptide chains on the ribosome. More recently, the liberation of tRNA fragments from tRNAs via specific enzyme cleavage has been characterized. Detection of tRNA fragments in sequencing data is difficult due to tRNA sequence redundancy and the short length of both tRNAs and their fragments. RESULTS: Here, we introduce tsRNAsearch, a Nextflow pipeline for the identification of differentially abundant tRNA fragments and other non-coding RNAs from small RNA-sequencing data. tsRNAsearch is intended for use when comparing two groups of datasets, such as control and treatment groups. tsRNAsearch comparatively searches for tRNAs and ncRNAs with irregular read distribution profiles (a proxy for RNA cleavage) using a combined score made up of four novel methods and a differential expression analysis, and reports the top ranked results in simple PDF and TEXT files. In this study, we used publicly available small RNA-seq data to replicate the identification of tsRNAs from chronic hepatitis-infected liver tissue data. In addition, we applied tsRNAsearch to pancreatic ductal adenocarcinoma (PDAC) and matched healthy pancreatic tissue small RNA-sequencing data. Our results support the identification of miR135b from the original study as a potential biomarker of PDAC and identify other potentially stronger miRNA biomarkers of PDAC. AVAILABILITY AND IMPLEMENTATION: https://github.com/GiantSpaceRobot/tsRNAsearch. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
MicroRNAs , RNA não Traduzido , RNA não Traduzido/genética , RNA de Transferência/metabolismo , MicroRNAs/genética , Análise de Sequência de RNA/métodos
10.
Front Genet ; 12: 627907, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33584828

RESUMO

Mesial temporal lobe epilepsy (mTLE) is a common form of epilepsy and is characterized by recurrent spontaneous seizures originating from the temporal lobe. The majority of mTLE patients develop pharmacoresistance to available anti-epileptic drugs (AEDs) while exhibiting severe pathological changes that can include hippocampal atrophy, neuronal death, gliosis and chronic seizures. The molecular mechanisms leading to mTLE remain incompletely understood, but are known to include defects in post-transcriptional gene expression regulation, including in non-coding RNAs (ncRNAs). Circular RNAs (circRNAs) are a class of recently rediscovered ncRNAs with high levels of expression in the brain and proposed roles in diverse neuronal processes. To explore a potential role for circRNAs in epilepsy, RNA-sequencing (RNA-seq) was performed on hippocampal tissue from a rat perforant pathway stimulation (PPS) model of TLE at different post-stimulation time points. This analysis revealed 218 differentially expressed (DE) circRNAs. Remarkably, the majority of these circRNAs were changed at the time of the occurrence of the first spontaneous seizure (DOFS). The expression pattern of two circRNAs, circ_Arhgap4 and circ_Nav3, was further validated and linked to miR-6328 and miR-10b-3p target regulation, respectively. This is the first study to examine the regulation of circRNAs during the development of epilepsy. It reveals an intriguing link between circRNA deregulation and the transition of brain networks into the state of spontaneous seizure activity. Together, our results provide a molecular framework for further understanding the role and mechanism-of-action of circRNAs in TLE.

11.
Cancers (Basel) ; 12(11)2020 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-33158116

RESUMO

Pancreatic Ductal Adenocarcinoma (PDAC) and biliary-tract cancers (BTC) often present at a late stage, and consequently patients have poor survival-outcomes. Circular RNAs (circRNAs) are non-coding RNA molecules whose role in tumourigenesis has recently been realised. They are stable, conserved and abundant, with tissue-specific expression profiles. Therefore, significant interest has arisen in their use as potential biomarkers for PDAC and BTC. High-throughput methods and more advanced bioinformatic techniques have enabled better profiling and progressed our understanding of how circRNAs may function in the competing endogenous RNA (ceRNA) network to influence the transcriptome in these cancers. Therefore, the aim of this systematic review was to describe the roles of circRNAs in PDAC and BTC, their potential as biomarkers, and their function in the wider ceRNA network in regulating microRNAs and the transcriptome. Medline, Embase, Scopus and PubMed were systematically reviewed to identify all the studies addressing circRNAs in PDAC and BTC. A total of 32 articles were included: 22 considering PDAC, 7 for Cholangiocarcinoma (CCA) and 3 for Gallbladder Cancer (GBC). There were no studies investigating Ampullary Cancer. Dysregulated circRNA expression was associated with features of malignancy in vitro, in vivo, and ex vivo. Overall, there have been very few PDAC and BTC tissues profiled for circRNA signatures. Therefore, whilst the current studies have demonstrated some of their functions in these cancers, further work is required to elucidate their potential role as cancer biomarkers in tissue, biofluids and biopsies.

12.
Biomedicines ; 8(11)2020 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-33114403

RESUMO

Schwann cells (SCs) are the main glial cells of the peripheral nervous system (PNS) and are known to be involved in various pathophysiological processes, such as diabetic neuropathy and nerve regeneration, through neurotrophin signaling. Such glial trophic support to axons, as well as neuronal survival/death signaling, has previously been linked to the p75 neurotrophin receptor (p75NTR) and its co-receptor Sortilin. Recently, SC-derived extracellular vesicles (EVs) were shown to be important for axon growth and nerve regeneration, but cargo of these glial cell-derived EVs has not yet been well-characterized. In this study, we aimed to characterize signatures of small RNAs in EVs derived from wild-type (WT) SCs and define differentially expressed small RNAs in EVs derived from SCs with genetic deletions of p75NTR (Ngfr-/-) or Sortilin (Sort1-/-). Using RNA sequencing, we identified a total of 366 miRNAs in EVs derived from WT SCs of which the most highly expressed are linked to the regulation of axonogenesis, axon guidance and axon extension, suggesting an involvement of SC EVs in axonal homeostasis. Signaling of SC EVs to non-neuronal cells was also suggested by the presence of several miRNAs important for regulation of the endothelial cell apoptotic process. Ablated p75NTR or sortilin expression in SCs translated into a set of differentially regulated tRNAs and miRNAs, with impact in autophagy and several cellular signaling pathways such as the phosphatidylinositol signaling system. With this work, we identified the global expression profile of small RNAs present in SC-derived EVs and provided evidence for a regulatory function of these vesicles on the homeostasis of other cell types of the PNS. Differentially identified miRNAs can pave the way to a better understanding of p75NTR and sortilin roles regarding PNS homeostasis and disease.

13.
Biomedicines ; 8(10)2020 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-32998458

RESUMO

Multipotent stem cells (MSCs) are used in various therapeutic applications based on their paracrine secretion activity. Here, we set out to identify and characterize the paracrine factors released during osteoblastogenesis, with a special focus on small non-coding RNAs released in extracellular vesicles (EVs). Bone marrow stem cells (BMSCs) and adipose stem cells (ASCs) from healthy human donors were used as representatives of MSCs. We isolated EVs secreted before and after induction of osteoblastic differentiation and found that the EVs contained a specific subset of microRNAs (miRNAs) and tRNA-derived small RNAs (tsRNA) compared to their parental cells. Osteoblastic differentiation had a larger effect on the small RNA profile of BMSC-EVs relative to ASC-EVs. Our data showed that EVs from different MSC origin exhibited distinct expression profiles of small RNA profiles when undergoing osteoblastogenesis, a factor that should be taken into consideration for stem cell therapy.

14.
Proc Natl Acad Sci U S A ; 117(27): 15977-15988, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32581127

RESUMO

Temporal lobe epilepsy is the most common drug-resistant form of epilepsy in adults. The reorganization of neural networks and the gene expression landscape underlying pathophysiologic network behavior in brain structures such as the hippocampus has been suggested to be controlled, in part, by microRNAs. To systematically assess their significance, we sequenced Argonaute-loaded microRNAs to define functionally engaged microRNAs in the hippocampus of three different animal models in two species and at six time points between the initial precipitating insult through to the establishment of chronic epilepsy. We then selected commonly up-regulated microRNAs for a functional in vivo therapeutic screen using oligonucleotide inhibitors. Argonaute sequencing generated 1.44 billion small RNA reads of which up to 82% were microRNAs, with over 400 unique microRNAs detected per model. Approximately half of the detected microRNAs were dysregulated in each epilepsy model. We prioritized commonly up-regulated microRNAs that were fully conserved in humans and designed custom antisense oligonucleotides for these candidate targets. Antiseizure phenotypes were observed upon knockdown of miR-10a-5p, miR-21a-5p, and miR-142a-5p and electrophysiological analyses indicated broad safety of this approach. Combined inhibition of these three microRNAs reduced spontaneous seizures in epileptic mice. Proteomic data, RNA sequencing, and pathway analysis on predicted and validated targets of these microRNAs implicated derepressed TGF-ß signaling as a shared seizure-modifying mechanism. Correspondingly, inhibition of TGF-ß signaling occluded the antiseizure effects of the antagomirs. Together, these results identify shared, dysregulated, and functionally active microRNAs during the pathogenesis of epilepsy which represent therapeutic antiseizure targets.


Assuntos
Epilepsia do Lobo Temporal/tratamento farmacológico , Epilepsia do Lobo Temporal/metabolismo , MicroRNAs/efeitos dos fármacos , MicroRNAs/metabolismo , Oligonucleotídeos Antissenso/farmacologia , Convulsões/tratamento farmacológico , Convulsões/metabolismo , Animais , Antagomirs/farmacologia , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Biomarcadores , Modelos Animais de Doenças , Epilepsia , Feminino , Hipocampo/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Proteômica , Ratos , Ratos Sprague-Dawley , Convulsões/genética , Análise de Sistemas , Regulação para Cima/efeitos dos fármacos
15.
Nucleic Acids Res ; 47(16): e93, 2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31216024

RESUMO

Single cell RNA sequencing methods have been increasingly used to understand cellular heterogeneity. Nevertheless, most of these methods suffer from one or more limitations, such as focusing only on polyadenylated RNA, sequencing of only the 3' end of the transcript, an exuberant fraction of reads mapping to ribosomal RNA, and the unstranded nature of the sequencing data. Here, we developed a novel single cell strand-specific total RNA library preparation method addressing all the aforementioned shortcomings. Our method was validated on a microfluidics system using three different cancer cell lines undergoing a chemical or genetic perturbation and on two other cancer cell lines sorted in microplates. We demonstrate that our total RNA-seq method detects an equal or higher number of genes compared to classic polyA[+] RNA-seq, including novel and non-polyadenylated genes. The obtained RNA expression patterns also recapitulate the expected biological signal. Inherent to total RNA-seq, our method is also able to detect circular RNAs. Taken together, SMARTer single cell total RNA sequencing is very well suited for any single cell sequencing experiment in which transcript level information is needed beyond polyadenylated genes.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , RNA Circular/análise , RNA Mensageiro/análise , RNA Ribossômico/análise , Análise de Célula Única/métodos , Benchmarking , Linhagem Celular Tumoral , Biblioteca Gênica , Humanos , Técnicas Analíticas Microfluídicas , Poli A/genética , Poli A/metabolismo , RNA Circular/genética , RNA Mensageiro/genética , RNA Ribossômico/genética , Análise de Sequência de RNA/estatística & dados numéricos
16.
Brain Stimul ; 12(6): 1390-1401, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31208877

RESUMO

BACKGROUND: Up to 80% of mesial temporal lobe epilepsy patients with hippocampal sclerosis (mTLE-HS) are resistant to pharmacological treatment, often necessitating surgical resection. Deep brain stimulation (DBS) has emerged as an alternative treatment for patients who do not qualify for resective brain surgery. Brain stimulation may also exert disease-modifying effects, and noncoding microRNAs have recently been proposed to shape the gene expression landscape in epilepsy. OBJECTIVE: We compared the effect of DBS of 4 different hippocampal target regions on epileptogenesis and manifest epilepsy in a rat model of mTLE-HS. To explore mechanisms, we profiled the effect of the most effective DBS paradigm on hippocampal microRNA levels. METHODS: MTLE-HS was induced by electrical stimulation of the perforant pathway (PP) in rats. This paradigm leads to spontaneous seizures within 4 weeks. We investigated DBS of 4 targets: PP, fimbria fornix (FF) formation, dentate gyrus (DG) and ventral hippocampal commissure (VHC). We applied both high- (130 Hz) and low-frequency (5 Hz or 1 Hz) stimulation. Functional microRNAs were identified in the hippocampus immediately after VHC-DBS and after a 97-day recording period by sequencing small RNAs bound to Argonaute-2, a component of the miRNA silencing complex. RESULTS: Low frequency DBS of the VHC significantly delayed the occurrence of the first spontaneous recurrent seizure in the PPS model by ∼300%, from 19 to 56 days. No other stimulation regime altered the latency phase. Upregulation of 5 microRNAs during epileptogenesis was suppressed by VHC-stimulation. CONCLUSION: We conclude that DBS of the VHC delays epilepsy in the PPS model in rats and is associated with differential regulation of several miRNAs. Additional studies are required to determine whether VHC-regulated miRNAs serve causal roles in the anti-epileptogenic effects of this DBS model.


Assuntos
Estimulação Encefálica Profunda/métodos , Epilepsia do Lobo Temporal/metabolismo , Epilepsia do Lobo Temporal/terapia , Fórnice/metabolismo , MicroRNAs/biossíntese , Animais , Epilepsia do Lobo Temporal/genética , Expressão Gênica , Masculino , MicroRNAs/genética , Ratos , Ratos Sprague-Dawley , Convulsões/genética , Convulsões/metabolismo , Convulsões/terapia
17.
J Vis Exp ; (145)2019 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-30907893

RESUMO

Extracellular and circulating RNAs (exRNA) are produced by many cell types of the body and exist in numerous bodily fluids such as saliva, plasma, serum, milk and urine. One subset of these RNAs are the posttranscriptional regulators - microRNAs (miRNAs). To delineate the miRNAs produced by specific cell types, in vitro culture systems can be used to harvest and profile exRNAs derived from one subset of cells. The secreted factors of mesenchymal stem cells are implicated in alleviating numerous diseases and is used as the in vitro model system here. This paper describes the process of collection, purification of small RNA and library generation to sequence extracellular miRNAs. ExRNAs from culture media differ from cellular RNA by being low RNA input samples, which calls for optimized procedures. This protocol provides a comprehensive guide to small exRNA sequencing from culture media, showing quality control checkpoints at each step during exRNA purification and sequencing.


Assuntos
Espaço Extracelular/metabolismo , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/isolamento & purificação , Análise de Sequência de RNA/métodos , Animais , Bactérias/genética , Sequência de Bases , Bovinos , Diferenciação Celular , Forma Celular , Biblioteca Gênica , Humanos , MicroRNAs/genética , Anotação de Sequência Molecular , Osteogênese , Tamanho da Partícula
18.
Mol Ther ; 26(2): 593-605, 2018 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-29331291

RESUMO

Bone remodeling and regeneration are highly regulated multistep processes involving posttranscriptional regulation by microRNAs (miRNAs). Here, we performed a global profiling of differentially expressed miRNAs in bone-marrow-derived skeletal cells (BMSCs; also known as stromal or mesenchymal stem cells) during in vitro osteoblast differentiation. We functionally validated the regulatory effects of several miRNAs on osteoblast differentiation and identified 15 miRNAs, most significantly miR-222 and miR-423, as regulators of osteoblastogenesis. In addition, we tested the possible targeting of miRNAs for enhancing bone tissue regeneration. Scaffolds functionalized with miRNA nano-carriers enhanced osteoblastogenesis in 3D culture and retained this ability at least 2 weeks after storage. Additionally, anti-miR-222 enhanced in vivo ectopic bone formation through targeting the cell-cycle inhibitor CDKN1B (cyclin-dependent kinase inhibitor 1B). A number of additional miRNAs exerted additive osteoinductive effects on BMSC differentiation, suggesting that pools of miRNAs delivered locally from an implanted scaffold can provide a promising approach for enhanced bone regeneration.


Assuntos
Regeneração Óssea/genética , Perfilação da Expressão Gênica , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/genética , Transcriptoma , Regiões 3' não Traduzidas , Antagomirs/genética , Biomarcadores , Ciclo Celular/genética , Diferenciação Celular/genética , Linhagem Celular , Biologia Computacional/métodos , Expressão Ectópica do Gene , Regulação da Expressão Gênica , Técnicas de Transferência de Genes , Humanos , Osteogênese/genética
19.
Front Immunol ; 8: 851, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28791012

RESUMO

INTRODUCTION: Extracellular vesicles (EVs) have been recognized as route of communication in the microenvironment. They transfer proteins and microRNAs (miRNAs) between cells, and possess immunoregulatory properties. However, their role in immune-mediated diseases remains to be elucidated. We hypothesized a role for EVs in the rheumatoid arthritis (RA) joint, potentially involving the development of T cell exhaustion and transfer of the co-inhibitory receptor programmed death 1 (PD-1). METHODS: Synovial fluid mononuclear cells (SFMCs) and peripheral blood mononuclear cells (PBMCs) from RA patients were investigated for PD-1 and other markers of T cell inhibition. EVs were isolated from RA plasma and synovial fluid. In addition, healthy control (HC) and RA PBMCs and SFMCs were cultured to produce EVs. These were isolated and investigated by immunogold electron microscopy (EM) and also co-cultured with lymphocytes and PD-1 negative cells to investigate their functions. Finally, the miRNA expression profiles were assessed in EVs isolated from RA and HC cell cultures. RESULTS: Cells from the RA joint expressed several T cell co-inhibitory receptors, including PD-1, TIM-3, and Tigit. ELISA demonstrated the presence of PD-1 in EVs from RA plasma and synovial fluid. Immunogold EM visualized PD-1 expression by EVs. Co-culturing lymphocytes and the PD-1 negative cell line, U937 with EVs resulted in an induction of PD-1 on these cells. Moreover, EVs from RA PBMCs increased proliferation in lymphocytes when co-cultured with these. All EVs contained miRNAs associated with PD-1 and other markers of T cell inhibition and the content was significantly lower in EVs from RA PBMCs than HC PBMCs. Stimulation of the cells increased the miRNA expression. However, EVs isolated from stimulated RA SFMCs did not change their miRNA expression profile to the same extend. CONCLUSION: EVs carrying both the PD-1 receptor and miRNAs associated with T cell inhibition were present in RA cell cultures. Upon stimulation, these miRNAs failed to be upregulated in EVs from RA SFMCs. This was in line with increased expression of T cell co-inhibitory markers on SFMCs. In conclusion, we suggest EVs to play a significant role in the RA microenvironment, potentially favoring the progression of T cell exhaustion.

20.
EMBO J ; 36(12): 1770-1787, 2017 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-28487411

RESUMO

Synaptic downscaling is a homeostatic mechanism that allows neurons to reduce firing rates during chronically elevated network activity. Although synaptic downscaling is important in neural circuit development and epilepsy, the underlying mechanisms are poorly described. We performed small RNA profiling in picrotoxin (PTX)-treated hippocampal neurons, a model of synaptic downscaling. Thereby, we identified eight microRNAs (miRNAs) that were increased in response to PTX, including miR-129-5p, whose inhibition blocked synaptic downscaling in vitro and reduced epileptic seizure severity in vivo Using transcriptome, proteome, and bioinformatic analysis, we identified the calcium pump Atp2b4 and doublecortin (Dcx) as miR-129-5p targets. Restoring Atp2b4 and Dcx expression was sufficient to prevent synaptic downscaling in PTX-treated neurons. Furthermore, we characterized a functional crosstalk between miR-129-5p and the RNA-binding protein (RBP) Rbfox1. In the absence of PTX, Rbfox1 promoted the expression of Atp2b4 and Dcx. Upon PTX treatment, Rbfox1 expression was downregulated by miR-129-5p, thereby allowing the repression of Atp2b4 and Dcx. We therefore identified a novel activity-dependent miRNA/RBP crosstalk during synaptic scaling, with potential implications for neural network homeostasis and epileptogenesis.


Assuntos
Regulação da Expressão Gênica , MicroRNAs/metabolismo , Fatores de Processamento de RNA/metabolismo , Sinapses/fisiologia , Animais , Biologia Computacional , Proteínas do Domínio Duplacortina , Proteína Duplacortina , Perfilação da Expressão Gênica , Hipocampo/efeitos dos fármacos , Hipocampo/fisiologia , Camundongos , Proteínas Associadas aos Microtúbulos/metabolismo , Neuropeptídeos/metabolismo , Picrotoxina/metabolismo , ATPases Transportadoras de Cálcio da Membrana Plasmática/metabolismo , Proteoma/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...