Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Redox Biol ; 72: 103128, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38554523

RESUMO

YbbN/CnoX are proteins that display a Thioredoxin (Trx) domain linked to a tetratricopeptide domain. YbbN from Escherichia coli (EcYbbN) displays a co-chaperone (holdase) activity that is induced by HOCl. Here, we compared EcYbbN with YbbN proteins from Xylella fastidiosa (XfYbbN) and from Pseudomonas aeruginosa (PaYbbN). EcYbbN presents a redox active Cys residue at Trx domain (Cys63), 24 residues away from SQHC motif (SQHC[N24]C) that can form mixed disulfides with target proteins. In contrast, XfYbbN and PaYbbN present two Cys residues in the CXXC (CAPC) motif, while only PaYbbN shows the Cys residue equivalent to Cys63 of EcYbbN. Our phylogenetic analysis revealed that most of the YbbN proteins are in the bacteria domain of life and that their members can be divided into four groups according to the conserved Cys residues. EcYbbN (SQHC[N24]C), XfYbbN (CAPC[N24]V) and PaYbbN (CAPC[N24]C) are representatives of three sub-families. In contrast to EcYbbN, both XfYbbN and PaYbbN: (1) reduced an artificial disulfide (DTNB) and (2) supported the peroxidase activity of Peroxiredoxin Q from X. fastidiosa, suggesting that these proteins might function similarly to the canonical Trx enzymes. Indeed, XfYbbN was reduced by XfTrx reductase with a high catalytic efficiency (kcat/Km = 1.27 x 107 M-1 s-1), similar to the canonical XfTrx (XfTsnC). Furthermore, EcYbbN and XfYbbN, but not PaYbbN displayed HOCl-induced holdase activity. Remarkably, EcYbbN gained disulfide reductase activity while lost the HOCl-activated chaperone function, when the SQHC was replaced by CQHC. In contrast, the XfYbbN CAPA mutant lost the disulfide reductase activity, while kept its HOCl-induced chaperone function. In all cases, the induction of the holdase activity was accompanied by YbbN oligomerization. Finally, we showed that deletion of ybbN gene did not render in P. aeruginosa more sensitive stressful treatments. Therefore, YbbN/CnoX proteins display distinct properties, depending on the presence of the three conserved Cys residues.


Assuntos
Escherichia coli , Filogenia , Pseudomonas aeruginosa , Tiorredoxinas , Xylella , Xylella/enzimologia , Xylella/genética , Xylella/metabolismo , Pseudomonas aeruginosa/enzimologia , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Tiorredoxinas/metabolismo , Tiorredoxinas/genética , Tiorredoxinas/química , Oxirredução , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/química , Sequência de Aminoácidos , Proteínas de Escherichia coli/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/química , Oxirredutases/metabolismo , Oxirredutases/genética , Oxirredutases/química
2.
Sci Rep ; 13(1): 19400, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938583

RESUMO

Aluminum (Al) toxicity limits crop production worldwide. Although studies have identified genes associated with Al tolerance in crops, a large amount of data remains unexplored using other strategies. Here, we searched for single substitutions and InDels across differentially expressed genes (DEGs), linked DEGs to Al-tolerance QTLs reported in the literature for common maize, and investigated the alternative splicing regulated by Al3+ toxicity. We found 929 substitutions between DEGs in Al-tolerant and 464 in Al-sensitive inbred lines, of which 165 and 80 were non-synonymous, respectively. Only 12 NS variants had deleterious predicted effect on protein function in Al-tolerant and 13 in Al-sensitive. Moreover, 378 DEGs were mapped in Al-QTL regions for the Al-tolerant and 213 for the Al-sensitive. Furthermore, Al stress is primarily regulated at the transcriptional level in popcorn. Important genes identified, such as HDT1, SWEET4a, GSTs, SAD9, PIP2-2, CASP-like 5, and AGP, may benefit molecular assisted popcorn breeding or be useful in biotechnological approaches. These findings offer insights into the mechanisms of Al tolerance in popcorn and provide a 'hypothesis-free' strategy for identifying and prioritizing candidate genes that could be used to develop molecular markers or cultivars resilient to acidic soils.


Assuntos
Alumínio , Transcriptoma , Alumínio/toxicidade , Zea mays/genética , Produtos Agrícolas , Processamento Alternativo
3.
Artigo em Inglês | MEDLINE | ID: mdl-37365421

RESUMO

The emergence of resistant microorganisms has reduced the effectiveness of currently available antimicrobials, necessitating the development of new strategies. Plant antimicrobial peptides (AMPs) are promising candidates for novel drug development. In this study, we aimed to isolate, characterize, and evaluate the antimicrobial activities of AMPs isolated from Capsicum annuum. The antifungal potential was tested against Candida species. Three AMPs from C. annuum leaves were isolated and characterized: a protease inhibitor, a defensin-like protein, and a lipid transporter protein, respectively named CaCPin-II, CaCDef-like, and CaCLTP2. All three peptides had a molecular mass between 3.5 and 6.5 kDa and caused morphological and physiological changes in four different species of the genus Candida, such as pseudohyphae formation, cell swelling and agglutination, growth inhibition, reduced cell viability, oxidative stress, membrane permeabilization, and metacaspase activation. Except for CaCPin-II, the peptides showed low or no hemolytic activity at the concentrations used in the yeast assays. CaCPin-II inhibited α-amylase activity. Together, these results suggest that these peptides have the potential as antimicrobial agents against species of the genus Candida and can serve as scaffolds for the development of synthetic peptides for this purpose.

4.
PLoS Negl Trop Dis ; 16(6): e0010559, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35759510

RESUMO

Epigenetic mechanisms are responsible for a wide range of biological phenomena in insects, controlling embryonic development, growth, aging and nutrition. Despite this, the role of epigenetics in shaping insect-pathogen interactions has received little attention. Gene expression in eukaryotes is regulated by histone acetylation/deacetylation, an epigenetic process mediated by histone acetyltransferases (HATs) and histone deacetylases (HDACs). In this study, we explored the role of the Aedes aegypti histone acetyltransferase CBP (AaCBP) after infection with Zika virus (ZIKV), focusing on the two main immune tissues, the midgut and fat body. We showed that the expression and activity of AaCBP could be positively modulated by blood meal and ZIKV infection. Nevertheless, Zika-infected mosquitoes that were silenced for AaCBP revealed a significant reduction in the acetylation of H3K27 (CBP target marker), followed by downmodulation of the expression of immune genes, higher titers of ZIKV and lower survival rates. Importantly, in Zika-infected mosquitoes that were treated with sodium butyrate, a histone deacetylase inhibitor, their capacity to fight virus infection was rescued. Our data point to a direct correlation among histone hyperacetylation by AaCBP, upregulation of antimicrobial peptide genes and increased survival of Zika-infected-A. aegypti.


Assuntos
Aedes , Infecção por Zika virus , Zika virus , Aedes/genética , Animais , Epigênese Genética , Histona Acetiltransferases/genética , Histonas/genética , Mosquitos Vetores , Zika virus/fisiologia
5.
Plants (Basel) ; 12(1)2022 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-36616175

RESUMO

Herbaspirillum seropedicae is an endophytic bacterium that can fix nitrogen and synthesize phytohormones, which can lead to a plant growth-promoting effect when used as a microbial inoculant. Studies focused on mechanisms of action are crucial for a better understanding of the bacteria-plant interaction and optimization of plant growth-promoting response. This work aims to understand the underlined mechanisms responsible for the early stimulatory growth effects of H. seropedicae inoculation in maize. To perform these studies, we combined transcriptomic and proteomic approaches with physiological analysis. The results obtained eight days after inoculation (d.a.i) showed increased root biomass (233 and 253%) and shoot biomass (249 and 264%), respectively, for the fresh and dry mass of maize-inoculated seedlings and increased green content and development. Omics data analysis, before a positive biostimulation phenotype (5 d.a.i.) revealed that inoculation increases N-uptake and N-assimilation machinery through differentially expressed nitrate transporters and amino acid pathways, as well carbon/nitrogen metabolism integration by the tricarboxylic acid cycle and the polyamine pathway. Additionally, phytohormone levels of root and shoot tissues increased in bacterium-inoculated-maize plants, leading to feedback regulation by the ubiquitin-proteasome system. The early biostimulatory effect of H. seropedicae partially results from hormonal modulation coupled with efficient nutrient uptake-assimilation and a boost in primary anabolic metabolism of carbon-nitrogen integrative pathways.

6.
Biochim Biophys Acta Proteins Proteom ; 1868(12): 140529, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32853775

RESUMO

The light spectrum quality is an important signal for plant growth and development. We evaluated the effects of different light spectra on the in vitro shoot development of Cedrela fissilis and its proteomic and polyamine (PA) profiles. Cotyledonary and apical nodal segments were grown under different light emitting diodes (LED) and fluorescent lamps. Shoots from cotyledonary nodal segments cultured with 6-benzyladenine (BA) that were grown under WmBdR LED showed increased length and higher fresh and dry matter compared to shoots grown under fluorescent lamps. A nonredundant protein databank generated by transcriptome sequencing and the de novo assembly of C. fissilis improved, and almost doubled, the protein identification compared to a Citrus sinensis databank. A total of 616 proteins were identified, with 23 up- and 103 down-accumulated in the shoots under WmBdR LEDs compared to fluorescent lamps. Most differentially accumulated proteins in shoots grown under the WmBdR LED lamp treatment compared to the fluorescent lamp treatment are involved in responding to metabolic processes, stress, biosynthetic and cellular protein modifications, and light stimulus processes. Among the proteins, the up-accumulation of argininosuccinate synthase was associated with an increase in the free putrescine content and, consequently, with higher shoot elongation under WmBdR LED. The down-accumulation of calreticulin, heat shock proteins, plastid-lipid-associated protein, ubiquitin-conjugating enzymes, and ultraviolet-B receptor UVR8 isoform X1 could be related to the longer shoot length noted under LED treatment. This study provides important data related to the effects of the light spectrum quality on in vitro morphogenesis through the modulation of specific proteins and free putrescine biosynthesis in C. fissilis, an endangered wood species from the Brazilian Atlantic Forest of economic and ecological relevance. The nonredundant protein databank of C. fissilis is available via ProteomeXchange under identifier PXD018020.


Assuntos
Cedrela/fisiologia , Cedrela/efeitos da radiação , Luz , Brotos de Planta/fisiologia , Brotos de Planta/efeitos da radiação , Poliaminas/metabolismo , Proteoma/efeitos da radiação , Cedrela/crescimento & desenvolvimento , Germinação , Espectrometria de Massas , Desenvolvimento Vegetal/efeitos da radiação , Brotos de Planta/crescimento & desenvolvimento , Proteômica/métodos
7.
Front Microbiol ; 11: 1535, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32719671

RESUMO

Candida haemulonii is a complex formed by C. haemulonii sensu stricto, C. haemulonii var. vulnera, and C. duobushaemulonii. Members of this complex are opportunistic pathogens closely related to C. pseudohaemulonii, C. lusitaniae, and C. auris, all members of a multidrug-resistant clade. Complete genome sequences for all members of this group are available in the GenBank database, except for C. haemulonii var. vulnera. Here, we report the first draft genomes of two C. haemulonii var. vulnera (isolates K1 and K2) and comparative genome analysis of closely related fungal species. The isolates were biofilm producers and non-susceptible to amphotericin B and fluconazole. The draft genomes comprised 350 and 387 contigs and total genome sizes of 13.21 and 13.26 Mb, with 5,479 and 5,507 protein-coding genes, respectively, allowing the identification of virulence and resistance genes. Comparative analyses of orthologous genes within the multidrug-resistant clade showed a total of 4,015 core clusters, supporting the conservation of 24,654 proteins and 3,849 single-copy gene clusters. Candida haemulonii var. vulnera shared a larger number of clusters with C. haemulonii and C. auris; however, more singletons were identified in C. lusitaniae and C. auris. Additionally, a multiple sequence alignment of Erg11p proteins revealed variants likely involved in reduced susceptibility to azole and polyene antifungal agents. The data presented in this work will, therefore, be of utmost importance for researchers studying the biology of the C. haemulonii complex and related species.

8.
Front Microbiol ; 10: 1669, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31396186

RESUMO

Multidrug-resistant (MDR) Klebsiella pneumoniae (Kp) is a major bacterial pathogen responsible for hospital outbreaks worldwide, mainly via the spread of high-risk clones and epidemic resistance plasmids. In this study, we evaluated the molecular epidemiology and ß-lactam resistance mechanisms of MDR-Kp strains isolated in a Brazilian academic care hospital. We used whole-genome sequencing to study drug resistance mechanisms and their relationships with a K. pneumoniae carbapenemase-producing (KPC) Kp outbreak. Forty-three Kp strains were collected between 2003 and 2012. Antimicrobial susceptibility testing was performed for 15 antimicrobial agents, and polymerase chain reaction (PCR) was used to detect 32 resistance genes. Mutations in ompk35, ompk36, and ompk37 were evaluated by PCR and DNA sequencing. Pulsed field gel electrophoresis (PFGE) and multilocus sequence typing (MLST) were carried out to differentiate the strains. Based on distinct epidemiological periods, six Kp strains were subjected to whole-genome sequencing. ß-lactamase coding genes were widely distributed among isolates. Almost all isolates had mutations in porin genes, particularly ompk35. The presence of bla KPC promoted a very high increase in carbapenem minimum inhibitory concentration only when ompk35 and ompk36 were interrupted by insertion sequences. A major cluster was identified by PFGE analysis and all isolates from this cluster belonged to clonal group (CG) 258. We have also identified a large repertoire of resistance genes in the sequenced isolates. A bla KPC-2-bearing plasmid (pUFPRA2) was also identified, which was very similar to a plasmid previously described in the first Brazilian KPC-Kp (2005). We found high-risk clones (CG258) and an epidemic resistance plasmid throughout the duration of the study (2003 to 2012), emphasizing a persistent presence of MDR-Kp strains in the hospital setting. Finally, we found that horizontal transfer of resistance genes between clones may have played a key role in the evolution of the outbreak.

9.
Parasitol Res ; 117(1): 213-223, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29192336

RESUMO

This study was conducted to identify the Sarcocystis species that infect the opossum Didelphis aurita in order to determine which sporocysts they are excreating in to the environment and help determine the role of D. aurita in the epidemiology of Sarcocystis. Sporocysts were obtained from intestinal tracts of 8 of 13 D. aurita trapped in Rio de Janeiro state, Brazil, and were orally inoculated into Melopsittacus undulatus and Balb/c nude Mus musculus. Portions of organs and muscles were processed for histology, immunohistochemistry, transmission electron microscopy (TEM), and PCR using primers JNB 33/54, and ITS. Amplification products were subjected to RFLP using DraI and HinfI. Some birds were euthanized 6, 7, 13, 16, and 24 days after inoculation (DAI). All other birds and all mice were euthanized 60 DAI. Schizonts were observed in the lungs using histology and immunostaining in birds examined prior to 60 DAI. Sarcocysts with a ~ 1.5-µm-thick wall were found in the breast, thigh, and tongue of some birds. Sarcocystis asexual stages were isolated in cell cultures inoculated with sporozoites. Parasite DNA isolated from bird tissues and cell cultures demonstrated that S. falcatula-like parasites were present in all samples derived from positive opossums. Asexual stages molecularly characterized as S. lindsayi-like were isolated in cell culture from one opossum with an apparent multiple infection. This study demonstrated that D. aurita is a definitive host for S. falcatula-like parasites and indicates that S. lindsayi-like parasites can be found in coinfections of this opossum species.


Assuntos
Didelphis/parasitologia , Sarcocystis/isolamento & purificação , Sarcocistose/veterinária , Animais , Brasil/epidemiologia , Linhagem Celular , Chlorocebus aethiops , Feminino , Interações Hospedeiro-Parasita , Intestinos/parasitologia , Intestinos/patologia , Masculino , Melopsittacus/parasitologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Microscopia Eletrônica de Transmissão , Músculos/parasitologia , Músculos/patologia , Oocistos/isolamento & purificação , Reação em Cadeia da Polimerase , Polimorfismo de Fragmento de Restrição , Sarcocystis/classificação , Sarcocystis/genética , Sarcocystis/ultraestrutura , Sarcocistose/epidemiologia , Sarcocistose/parasitologia
10.
Sci Rep ; 6: 36009, 2016 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-27824062

RESUMO

Soybean (Glycine max) is a major legume crop worldwide, providing a critical source of protein and oil. The release of the soybean genome fuelled several transcriptome projects comprising multiple developmental stages and environmental conditions. Nevertheless, the global transcriptional patterns of embryonic axes during germination remain unknown. Here we report the analysis of ~1.58 billion RNA-Seq reads from soybean embryonic axes at five germination stages. Our results support the early activation of processes that are critical for germination, such as glycolysis, Krebs cycle and cell wall remodelling. Strikingly, only 3 hours after imbibition there is a preferential up-regulation of protein kinases and transcription factors, particularly from the LOB domain family, implying that transcriptional and post-transcriptional regulation play major roles early after imbibition. Lipid mobilization and glyoxylate pathways are also transcriptionally active in the embryonic axes, indicating that the local catabolism of oil reserves in the embryonic axes contributes to energy production during germination. We also present evidence supporting abscisic acid inactivation and the up-regulation of gibberellin, ethylene and brassinosteroid pathways. Further, there is a remarkable differential activation of paralogous genes in these hormone signalling pathways. Taken together, our results provide insights on the regulation and biochemistry of soybean germination.


Assuntos
Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Germinação , Glycine max/crescimento & desenvolvimento , Redes e Vias Metabólicas/genética , Análise de Sequência de RNA
11.
FEBS J ; 282(17): 3395-3411, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26084810

RESUMO

Identification of essential genes is critical to understanding the physiology of a species, proposing novel drug targets and uncovering minimal gene sets required for life. Although essential gene sets of several organisms have been determined using large-scale mutagenesis techniques, systematic studies addressing their conservation, genomic context and functions remain scant. Here we integrate 17 essential gene sets from genome-wide in vitro screenings and three gene collections required for growth in vivo, encompassing 15 Bacteria and one Archaea. We refine and generalize important theories proposed using Escherichia coli. Essential genes are typically monogenic and more conserved than nonessential genes. Genes required in vivo are less conserved than those essential in vitro, suggesting that more divergent strategies are deployed when the organism is stressed by the host immune system and unstable nutrient availability. We identified essential analogous pathways that would probably be missed by orthology-based essentiality prediction strategies. For example, Streptococcus sanguinis carries horizontally transferred isoprenoid biosynthesis genes that are widespread in Archaea. Genes specifically essential in Mycobacterium tuberculosis and Burkholderia pseudomallei are reported as potential drug targets. Moreover, essential genes are not only preferentially located in operons, but also occupy the first position therein, supporting the influence of their regulatory regions in driving transcription of whole operons. Finally, these important genomic features are shared between Bacteria and at least one Archaea, suggesting that high order properties of gene essentiality and genome architecture were probably present in the last universal common ancestor or evolved independently in the prokaryotic domains.


Assuntos
Regulação da Expressão Gênica em Archaea , Regulação Bacteriana da Expressão Gênica , Genes Essenciais , Genoma Arqueal , Genoma Bacteriano , Archaea/genética , Evolução Biológica , Burkholderia pseudomallei/genética , Escherichia coli/genética , Redes Reguladoras de Genes , Anotação de Sequência Molecular , Mycobacterium tuberculosis/genética , Streptococcus/genética
12.
PLoS One ; 9(11): e112654, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25393538

RESUMO

Carica papaya (papaya) is an economically important tropical fruit. Molecular marker-assisted selection is an inexpensive and reliable tool that has been widely used to improve fruit quality traits and resistance against diseases. In the present study we report the development and validation of an atlas of papaya simple sequence repeat (SSR) markers. We integrated gene predictions and functional annotations to provide a gene-centered perspective for marker-assisted selection studies. Our atlas comprises 160,318 SSRs, from which 21,231 were located in genic regions (i.e. inside exons, exon-intron junctions or introns). A total of 116,453 (72.6%) of all identified repeats were successfully mapped to one of the nine papaya linkage groups. Primer pairs were designed for markers from 9,594 genes (34.5% of the papaya gene complement). Using papaya-tomato orthology assessments, we assembled a list of 300 genes (comprising 785 SSRs) potentially involved in fruit ripening. We validated our atlas by screening 73 SSR markers (including 25 fruit ripening genes), achieving 100% amplification rate and uncovering 26% polymorphism rate between the parental genotypes (Sekati and JS12). The SSR atlas presented here is the first comprehensive gene-centered collection of annotated and genome positioned papaya SSRs. These features combined with thousands of high-quality primer pairs make the atlas an important resource for the papaya research community.


Assuntos
Carica/genética , Frutas/genética , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Repetições de Microssatélites , Atlas como Assunto , Mapeamento Cromossômico , Etiquetas de Sequências Expressas , Marcadores Genéticos , Genótipo , Polimorfismo Genético , Seleção Genética
13.
J Insect Physiol ; 60: 50-7, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24211390

RESUMO

Bruchid beetles infest various seeds. The seed coat is the first protective barrier against bruchid infestation. Although non-host seed coats often impair the oviposition, eclosion and survival of the bruchid Callosobruchus maculatus larvae, morphological and biochemical aspects of this phenomenon remain unclear. Here we show that Phaseolus vulgaris (non-host) seed coat reduced C. maculatus female oviposition about 48%, increased 83% the seed penetration time, reduced larval mass and survival about 62 % and 40 % respectively. Interestingly, we found no visible effect on the major events of insect embryogenesis, namely the formation of the cellular blastoderm, germ band extension/retraction, embryo segmentation, appendage formation and dorsal closure. Larvae fed on P. vulgaris seed coat have greater FITC fluorescence signal in the midgut than in the feces, as opposed to what is observed in control larvae fed on Vigna unguiculata. Cysteine protease, α-amylase and α-glucosidase activities were reduced in larvae fed on P. vulgaris natural seed coat. Taken together, our results suggest that although P. vulgaris seed coat does not interfere with C. maculatus embryonic development, food digestion was clearly compromised, impacting larval fitness (e.g. body mass and survivability).


Assuntos
Phaseolus/fisiologia , Sementes/fisiologia , Gorgulhos/crescimento & desenvolvimento , Animais , Digestão , Desenvolvimento Embrionário , Feminino , Larva/crescimento & desenvolvimento , Oviposição , Gorgulhos/embriologia
14.
PLoS One ; 8(2): e55127, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23390519

RESUMO

F-box proteins constitute a large gene family that regulates processes from hormone signaling to stress response. F-box proteins are the substrate recognition modules of SCF E3 ubiquitin ligases. Here we report very distinct trends in family size, duplication, synteny and transcription of F-box genes in two nitrogen-fixing legumes, Glycine max (soybean) and Medicago truncatula (alfafa). While the soybean FBX genes emerged mainly through segmental duplications (including whole-genome duplications), M. truncatula genome is dominated by locally-duplicated (tandem) F-box genes. Many of these young FBX genes evolved complex transcriptional patterns, including preferential transcription in different tissues, suggesting that they have probably been recruited to important biochemical pathways (e.g. nodulation and seed development).


Assuntos
Proteínas F-Box/genética , Duplicação Gênica , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Glycine max/genética , Medicago truncatula/genética , Proteínas de Plantas/genética , Evolução Molecular , Proteínas F-Box/metabolismo , Perfilação da Expressão Gênica , Medicago truncatula/metabolismo , Filogenia , Proteínas de Plantas/metabolismo , Glycine max/metabolismo , Sintenia , Sequências de Repetição em Tandem , Transcrição Gênica
15.
PLoS One ; 7(9): e45707, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-23049844

RESUMO

In eukaryotes, protein kinases catalyze the transfer of a gamma-phosphate from ATP (or GTP) to specific amino acids in protein targets. In plants, protein kinases have been shown to participate in signaling cascades driving responses to environmental stimuli and developmental processes. Plant meristems are undifferentiated tissues that provide the major source of cells that will form organs throughout development. However, non-dividing specialized cells can also dedifferentiate and re-initiate cell division if exposed to appropriate conditions. Mps1 (Monopolar spindle) is a dual-specificity protein kinase that plays a critical role in monitoring the accuracy of chromosome segregation in the mitotic checkpoint mechanism. Although Mps1 functions have been clearly demonstrated in animals and fungi, its role in plants is so far unclear. Here, using structural and biochemical analyses here we show that Mps1 has highly similar homologs in many plant genomes across distinct lineages (e.g. AtMps1 in Arabidopsis thaliana). Several structural features (i.e. catalytic site, DFG motif and threonine triad) are clearly conserved in plant Mps1 kinases. Structural and sequence analysis also suggest that AtMps1 interact with other cell cycle proteins, such as Mad2 and MAPK1. By using a very specific Mps1 inhibitor (SP600125) we show that compromised AtMps1 activity hampers the development of A. thaliana seedlings in a dose-dependent manner, especially in secondary roots. Moreover, concomitant administration of the auxin IAA neutralizes the AtMps1 inhibition phenotype, allowing secondary root development. These observations let us to hypothesize that AtMps1 might be a downstream regulator of IAA signaling in the formation of secondary roots. Our results indicate that Mps1 might be a universal component of the Spindle Assembly Checkpoint machinery across very distant lineages of eukaryotes.


Assuntos
Proteínas de Arabidopsis/química , Arabidopsis/metabolismo , Proteínas de Ciclo Celular/química , Regulação da Expressão Gênica de Plantas , Proteínas Quinases/química , Proteínas Serina-Treonina Quinases/química , Proteínas Tirosina Quinases/química , Motivos de Aminoácidos , Sequência de Aminoácidos , Catálise , Inibidores Enzimáticos/farmacologia , Evolução Molecular , Genoma de Planta , Conformação Molecular , Dados de Sequência Molecular , Fosforilação , Filogenia , Raízes de Plantas/metabolismo , Homologia de Sequência de Aminoácidos , Transdução de Sinais
16.
Front Genet ; 3: 47, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22479268

RESUMO

Large-scale chemical genetics screens (chemogenomics) in yeast have been widely used to find drug targets, understand the mechanism-of-action of compounds, and unravel the biochemistry of drug resistance. Chemogenomics is based on the comparison of growth of gene deletants in the presence and absence of a chemical substance. Such studies showed that more than 90% of the yeast genes are required for growth in the presence of at least one chemical. Analysis of these data, using computational approaches, has revealed non-trivial features of the natural chemical tolerance systems. As a result two non-overlapping sets of genes are seen to respectively impart robustness and evolvability in the context of natural chemical resistance. The former is composed of multidrug-resistance genes, whereas the latter comprises genes sharing chemical genetic profiles with many others. Recent publications showing the potential applications chemogenomics in studying the pharmacological basis of various drugs are discussed, as well as the expansion of chemogenomics to other organisms. Finally, integration of chemogenomics with sensitive sequence analysis and ubiquitination/phosphorylation data led to the discovery of a new conserved domain and important post-translational modification pathways involved in stress resistance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...