Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Materials (Basel) ; 17(2)2024 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-38255549

RESUMO

This work presents the results of research conducted with an aim to improve the surface quality, hardness and wear resistance of titanium alloy Ti6Al4V, obtained via the laser powder bed fusion of metals (PBF-LB/M) process of additive manufacturing (AM) known as the 3D printing of metals. The 3D surfaces were coated via reactive electrospark deposition (RESD) with low-pulse energy and electrode materials of low-melting metals and multi-component hard alloys. The relationship between the electrical parameters of the RESD process and the quality, composition, structure, microhardness and wear resistance of the treated surfaces were investigated and analysed. It was found that the roughness and thickness of the resulting surface layers could be changed by changing the RESD modes within the limits of 2.5-5 µm and 8-20 µm, respectively. RESD processing allowed us to achieve two to five times lower roughness than that of titanium AM surfaces. The microhardness and wear resistance of the RESD surfaces are two to four times higher than those of the titanium substrate. Possibilities for the purposeful synthesis of new wear-resistant phases and compounds and for obtaining surface layers with predetermined thickness and roughness were established. It was shown that the subsequent reaction's electrospark processing helped to simultaneously reduce the roughness and increase the hardness and wear resistance of the modified surfaces, and can be successfully used instead of the material-energy-labour and machine-intensive finishing treatments of the titanium surfaces obtained after 3D printing.

2.
Materials (Basel) ; 15(19)2022 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-36234152

RESUMO

Friction riveting represents a promising technology for joining similar and/or dissimilar materials of light-weight components. However, the main drawback of the technology is that it is primarily used only with special machines for friction welding that have a force control. In this study we used accessible CNC machines with a position control. A set of friction riveting experiments was performed to establish the relationship between the processing parameters, the rivet formation and its mechanical strength. During the manufacturing process, the axial force and torque were constantly measured. The fabricated joints were examined using an X-ray imaging technique, microstructural analyses, and mechanical tests. The samples were subjected to the pull-out test to analyse the joints' strength and determine the failure mode type. In addition, a correlation between the friction riveting processing parameters, the rivet penetration depth, the rivet shape and the joint strength was established. The results depict that a higher axial force in the first production phase at the higher feeding rate increases the penetration depth, while in the second phase at lower feeding rate, an anchoring shape of a rivet forms.

3.
J Esthet Restor Dent ; 34(7): 1132-1141, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35997320

RESUMO

OBJECTIVE: To determine if there are any differences in surface characteristics (surface roughness and contact angle) among different CAD/CAM materials indicated for fabricating implant-supported restorations, following all the material preparation protocols provided by the manufacturer. MATERIALS AND METHODS: One-hundred forty-four specimens were divided into six groups: RBC (resin-based composite), PMMA (polymethyl methacrylate), PEEK (polyether ether ketone), ZP (zirconia polished), ZG (zirconia glazed) and CoCr4 (CoCr4 alloy). The experimental part included surface roughness (SR) and contact angle of water (WCA) analyses, fulfilled with Atomic Force Microscopy (AFM) and Scanning Electron Microscopy (SEM) view of surface topography. The data were analyzed using Kruskal-Wallis test with a Dunn's post hoc analysis, the correlation between measurements was tested using Spearman's rank correlation coefficient and all data were presented as mean ± SD. RESULTS: ZG specimens were significantly rougher compared to other groups (p ≤ 0.05). The WCA measurements revealed significantly lower mean values in ZG group (p ≤ 0.05), contrary to PEEK and CoCr4 , where significantly higher mean values were observed, compared to other groups (p ≤ 0.05). There exist a moderate negative correlation between the SR and WCA (ρ = -0.41). AFM 3D and SEM 2D images presented more or less heterogeneous surface of all materials. CONCLUSIONS: There were statistically significant differences in surface roughness and contact angle among tested material groups. Moderate negative correlation was found between surface roughness and contact angle of tested material groups. CLINICAL SIGNIFICANCE: The study gives us a better understanding of influence of physicochemical characteristics of investigated materials on their surface properties and provides useful knowledge for future researches in a view of material's behavior under in vivo conditions, when it comes to a question of features related to surface quality, such as microbial adhesion, corrosion, wear, biocompatibility and esthetics.


Assuntos
Desenho Assistido por Computador , Polimetil Metacrilato , Ligas , Benzofenonas , Éteres , Cetonas , Teste de Materiais , Polietilenoglicóis/química , Polímeros , Propriedades de Superfície , Água , Zircônio
4.
Materials (Basel) ; 14(21)2021 Oct 28.
Artigo em Inglês | MEDLINE | ID: mdl-34771987

RESUMO

In the past few decades, ZrN thin films have been identified as wear resistant coatings for tribological applications. The mechanical and tribological properties of ZrN thin layers depend on internal stress induced by the adopted deposition techniques and deposition parameters such as pressure, temperature, and growth rate. In sputtering deposition processes, the selected target voltage waveform and the plasma characteristics also play a crucial influence on physical properties of produced coatings. In present work, ZrN thin films, obtained setting different values of duty cycle in a reactive bipolar pulsed dual magnetron sputtering plant, were investigated to evaluate their residual stress through the substrate curvature method. A considerable progressive increase of residual stress values was measured at decreasing duty cycle, attesting the significant role of voltage waveform in stress development. An evident correlation was also highlighted between the values of the duty cycle and those of wear factor. The performed analysis attested an advantageous effect of internal stress, having the samples with high compressive stress, higher wear resistance. A downward trend for wear rate with the increase of internal residual stress was observed. The choice of suitable values of duty cycle allowed to produce ceramic coatings with improved tribological performance.

5.
Beilstein J Nanotechnol ; 8: 2662-2668, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29354338

RESUMO

The development of atomic force microscopy (AFM) has allowed wear mechanisms to be investigated at the nanometer scale by means of a single asperity contact generated by an AFM tip and an interacting surface. However, the low wear rate at the nanoscale and the thermal drift require fastidious quantitative measurements of the wear volume for determining wear laws. In this paper, we describe a new, effective, experimental methodology based on circular mode AFM, which generates high frequency, circular displacements of the contact. Under such conditions, the wear rate is significant and the drift of the piezoelectric actuator is limited. As a result, well-defined wear tracks are generated and an accurate computation of the wear volume is possible. Finally, we describe the advantages of this method and we report a relevant application example addressing a Cu/Al2O3 nanocomposite material used in industrial applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...