Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Am J Respir Crit Care Med ; 207(8): 1030-1041, 2023 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-36378114

RESUMO

Rationale: Among patients with sepsis, variation in temperature trajectories predicts clinical outcomes. In healthy individuals, normal body temperature is variable and has decreased consistently since the 1860s. The biologic underpinnings of this temperature variation in disease and health are unknown. Objectives: To establish and interrogate the role of the gut microbiome in calibrating body temperature. Methods: We performed a series of translational analyses and experiments to determine whether and how variation in gut microbiota explains variation in body temperature in sepsis and in health. We studied patient temperature trajectories using electronic medical record data. We characterized gut microbiota in hospitalized patients using 16S ribosomal RNA gene sequencing. We modeled sepsis using intraperitoneal LPS in mice and modulated the microbiome using antibiotics, germ-free, and gnotobiotic animals. Measurements and Main Results: Consistent with prior work, we identified four temperature trajectories in patients hospitalized with sepsis that predicted clinical outcomes. In a separate cohort of 116 hospitalized patients, we found that the composition of patients' gut microbiota at admission predicted their temperature trajectories. Compared with conventional mice, germ-free mice had reduced temperature loss during experimental sepsis. Among conventional mice, heterogeneity of temperature response in sepsis was strongly explained by variation in gut microbiota. Healthy germ-free and antibiotic-treated mice both had lower basal body temperatures compared with control animals. The Lachnospiraceae family was consistently associated with temperature trajectories in hospitalized patients, experimental sepsis, and antibiotic-treated mice. Conclusions: The gut microbiome is a key modulator of body temperature variation in both health and critical illness and is thus a major, understudied target for modulating physiologic heterogeneity in sepsis.


Assuntos
Microbioma Gastrointestinal , Microbiota , Sepse , Animais , Camundongos , Temperatura Corporal , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , RNA Ribossômico 16S/genética
2.
mBio ; 13(4): e0190422, 2022 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-35900107

RESUMO

Susceptibility to Clostridioides difficile infection (CDI) typically follows the administration of antibiotics. Patients with inflammatory bowel disease (IBD) have increased incidence of CDI, even in the absence of antibiotic treatment. However, the mechanisms underlying this susceptibility are not well understood. To explore the intersection between CDI and IBD, we recently described a mouse model where colitis triggered by the murine gut bacterium, Helicobacter hepaticus, in IL-10-/- mice led to susceptibility to C. difficile colonization without antibiotic administration. The current work disentangles the relative contributions of inflammation and gut microbiota in colonization resistance to C. difficile in this model. We show that inflammation drives changes in microbiota composition, which leads to CDI susceptibility. Decreasing inflammation with an anti-p40 monoclonal antibody promotes a shift of the microbiota back toward a colonization-resistant state. Transferring microbiota from susceptible and resistant mice to germfree animals transfers the susceptibility phenotype, supporting the primacy of the microbiota in colonization resistance. These findings shine light on the complex interactions between the host, microbiota, and C. difficile in the context of intestinal inflammation, and may form a basis for the development of strategies to prevent or treat CDI in IBD patients. IMPORTANCE Patients with inflammatory bowel disease (IBD) have an increased risk of developing C. difficile infection (CDI), even in the absence of antibiotic treatment. Yet, mechanisms regulating C. difficile colonization in IBD patients remain unclear. Here, we use an antibiotic-independent mouse model to demonstrate that intestinal inflammation alters microbiota composition to permit C. difficile colonization in mice with colitis. Notably, treating inflammation with an anti-p40 monoclonal antibody, a clinically relevant IBD therapeutic, restores microbiota-mediated colonization resistance to the pathogen. Through microbiota transfer experiments in germfree mice, we confirm that the microbiota shaped in the setting of IBD is the primary driver of susceptibility to C. diffiicile colonization. Collectively, our findings provide insight into CDI pathogenesis in the context of intestinal inflammation, which may inform methods to manage infection in IBD patients. More broadly, this work advances our understanding of mechanisms by which the host-microbiota interface modulates colonization resistance to C. difficile.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Colite , Doenças Inflamatórias Intestinais , Microbiota , Animais , Antibacterianos/uso terapêutico , Anticorpos Monoclonais , Clostridioides , Infecções por Clostridium/microbiologia , Modelos Animais de Doenças , Inflamação , Camundongos
3.
mBio ; 12(3): e0273320, 2021 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-34126769

RESUMO

Clostridioides difficile is a noteworthy pathogen in patients with inflammatory bowel disease (IBD). Patients with IBD who develop concurrent C. difficile infection (CDI) experience increased morbidity and mortality. IBD is associated with intestinal inflammation and alterations of the gut microbiota, both of which can diminish colonization resistance to C. difficile. Here, we describe the development of a mouse model to explore the role that IBD-induced changes of the gut microbiome play in susceptibility to C. difficile. Helicobacter hepaticus, a normal member of the mouse gut microbiota, triggers pathological inflammation in the distal intestine akin to human IBD in mice that lack intact interleukin 10 (IL-10) signaling. We demonstrate that mice with H. hepaticus-induced IBD were susceptible to C. difficile colonization in the absence of other perturbations, such as antibiotic treatment. Concomitant IBD and CDI were associated with significantly worse disease than observed in animals with colitis alone. Development of IBD resulted in a distinct intestinal microbiota community compared to that of non-IBD controls. Inflammation played a critical role in the susceptibility of animals with IBD to C. difficile colonization, as mice colonized with an isogenic mutant of H. hepaticus that triggers an attenuated intestinal inflammation maintained full colonization resistance. These studies with a novel mouse model of IBD and CDI emphasize the importance of host responses and alterations of the gut microbiota in susceptibility to C. difficile colonization and infection in the setting of IBD. IMPORTANCE The incidence of C. difficile infection (CDI) has increased significantly among patients with IBD, independently of antibiotic use, yet the relationship between IBD and increased risk for CDI remains to be understood. Our study sought to describe and utilize an antibiotic-independent mouse model to specifically explore the relationship between the IBD-associated gut and susceptibility to C. difficile colonization and CDI development. We demonstrate that the development of IBD is sufficient to render mice susceptible to C. difficile colonization and results in significantly worse disease than IBD alone. Furthermore, this model requires IBD-induced inflammation to overcome colonization resistance to C. difficile. This model recapitulates human IBD and CDI comorbidity and will aid in developing new clinical approaches to predict, diagnose, and treat C. difficile infection in the IBD population.


Assuntos
Clostridioides difficile/patogenicidade , Infecções por Clostridium/etiologia , Microbioma Gastrointestinal , Inflamação/complicações , Doenças Inflamatórias Intestinais/complicações , Doenças Inflamatórias Intestinais/microbiologia , Intestinos/imunologia , Animais , Infecções por Clostridium/imunologia , Modelos Animais de Doenças , Suscetibilidade a Doenças , Feminino , Intestinos/microbiologia , Intestinos/patologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL
4.
mBio ; 12(2)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33785619

RESUMO

Clostridioides difficile, a Gram-positive, spore-forming bacterium, is the primary cause of infectious nosocomial diarrhea. Antibiotics are a major risk factor for C. difficile infection (CDI), as they disrupt the gut microbial community, enabling increased germination of spores and growth of vegetative C. difficile To date, the only single-species bacterial preparation that has demonstrated efficacy in reducing recurrent CDI in humans is nontoxigenic C. difficile Using multiple infection models, we determined that precolonization with a less virulent strain is sufficient to protect from challenge with a lethal strain of C. difficile, surprisingly even in the absence of adaptive immunity. Additionally, we showed that protection is dependent on high levels of colonization by the less virulent strain and that it is mediated by exclusion of the invading strain. Our results suggest that reduction of amino acids, specifically glycine following colonization by the first strain of C. difficile, is sufficient to decrease germination of the second strain, thereby limiting colonization by the lethal strain.IMPORTANCE Antibiotic-associated colitis is often caused by infection with the bacterium Clostridioides difficile In this study, we found that reduction of the amino acid glycine by precolonization with a less virulent strain of C. difficile is sufficient to decrease germination of a second strain. This finding demonstrates that the axis of competition for nutrients can include multiple life stages. This work is important, as it is the first to identify a possible mechanism through which precolonization with C. difficile, a current clinical therapy, provides protection from reinfection. Furthermore, our work suggests that targeting nutrients utilized by all life stages could be an improved strategy for bacterial therapeutics that aim to restore colonization resistance in the gut.


Assuntos
Antibiose , Terapia Biológica , Clostridioides difficile/fisiologia , Infecções por Clostridium/prevenção & controle , Animais , Clostridioides difficile/classificação , Clostridioides difficile/crescimento & desenvolvimento , Clostridioides difficile/patogenicidade , Infecções por Clostridium/microbiologia , Feminino , Glicina/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microbiota , Esporos Bacterianos/classificação , Esporos Bacterianos/genética , Esporos Bacterianos/crescimento & desenvolvimento , Esporos Bacterianos/fisiologia , Virulência
5.
mBio ; 11(3)2020 05 05.
Artigo em Inglês | MEDLINE | ID: mdl-32371595

RESUMO

Clostridioides difficile infection (CDI) can result in severe disease and death, with no accurate models that allow for early prediction of adverse outcomes. To address this need, we sought to develop serum-based biomarker models to predict CDI outcomes. We prospectively collected sera ≤48 h after diagnosis of CDI in two cohorts. Biomarkers were measured with a custom multiplex bead array assay. Patients were classified using IDSA severity criteria and the development of disease-related complications (DRCs), which were defined as ICU admission, colectomy, and/or death attributed to CDI. Unadjusted and adjusted models were built using logistic and elastic net modeling. The best model for severity included procalcitonin (PCT) and hepatocyte growth factor (HGF) with an area (AUC) under the receiver operating characteristic (ROC) curve of 0.74 (95% confidence interval, 0.67 to 0.81). The best model for 30-day mortality included interleukin-8 (IL-8), PCT, CXCL-5, IP-10, and IL-2Rα with an AUC of 0.89 (0.84 to 0.95). The best model for DRCs included IL-8, procalcitonin, HGF, and IL-2Rα with an AUC of 0.84 (0.73 to 0.94). To validate our models, we employed experimental infection of mice with C. difficile Antibiotic-treated mice were challenged with C. difficile and a similar panel of serum biomarkers was measured. Applying each model to the mouse cohort of severe and nonsevere CDI revealed AUCs of 0.59 (0.44 to 0.74), 0.96 (0.90 to 1.0), and 0.89 (0.81 to 0.97). In both human and murine CDI, models based on serum biomarkers predicted adverse CDI outcomes. Our results support the use of serum-based biomarker panels to inform Clostridioides difficile infection treatment.IMPORTANCE Each year in the United States, Clostridioides difficile causes nearly 500,000 gastrointestinal infections that range from mild diarrhea to severe colitis and death. The ability to identify patients at increased risk for severe disease or mortality at the time of diagnosis of C. difficile infection (CDI) would allow clinicians to effectively allocate disease modifying therapies. In this study, we developed models consisting of only a small number of serum biomarkers that are capable of predicting both 30-day all-cause mortality and adverse outcomes of patients at time of CDI diagnosis. We were able to validate these models through experimental mouse infection. This provides evidence that the biomarkers reflect the underlying pathophysiology and that our mouse model of CDI reflects the pathogenesis of human infection. Predictive models can not only assist clinicians in identifying patients at risk for severe CDI but also be utilized for targeted enrollment in clinical trials aimed at reduction of adverse outcomes from severe CDI.


Assuntos
Infecções por Clostridium/diagnóstico , Infecções por Clostridium/mortalidade , Mediadores da Inflamação/sangue , Adulto , Idoso , Animais , Biomarcadores/sangue , Clostridioides difficile/patogenicidade , Infecções por Clostridium/sangue , Modelos Animais de Doenças , Feminino , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Projetos Piloto , Valor Preditivo dos Testes , Prognóstico , Estudos Prospectivos , Curva ROC , Índice de Gravidade de Doença
6.
Infect Immun ; 88(6)2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32284366

RESUMO

Clostridioides (formerly Clostridium) difficile is the most common cause of hospital-acquired infection, and advanced age is a risk factor for C. difficile infection. Disruption of the intestinal microbiota and immune responses contribute to host susceptibility and severity of C. difficile infection. However, the specific impact of aging on immune responses during C. difficile infection remains to be well described. This study explores the effect of age on cellular and cytokine immune responses during C. difficile infection. Young mice (2 to 3 months old) and aged mice (22 to 28 months old) were rendered susceptible to C. difficile infection with the antibiotic cefoperazone and then infected with C. difficile strains with varied disease-causing potentials. We observe that the host age and the infecting C. difficile strain influenced the severity of disease associated with infection. Tissue-specific CD45+ immune cell responses occurred at the time of peak disease severity in the ceca and colons of all mice infected with a high-virulence strain of C. difficile; however, significant deficits in intestinal neutrophils and eosinophils were detected in aged mice, with a corresponding decrease in circulating CXCL1, an important neutrophil recruiter and activator. Interestingly, this lack of intestinal granulocyte response in aged mice during severe C. difficile infection was accompanied by a simultaneous increase in circulating white blood cells, granulocytes, and interleukin 17A (IL-17A). These findings demonstrate that age-related alterations in neutrophils and eosinophils and systemic cytokine and chemokine responses are associated with severe C. difficile infection and support a key role for intestinal eosinophils in mitigating C. difficile-mediated disease severity.


Assuntos
Envelhecimento/imunologia , Clostridioides difficile/fisiologia , Infecções por Clostridium/imunologia , Infecções por Clostridium/metabolismo , Citocinas/metabolismo , Granulócitos/imunologia , Granulócitos/metabolismo , Imunidade Inata , Animais , Quimiotaxia de Leucócito , Infecções por Clostridium/microbiologia , Eosinófilos/imunologia , Eosinófilos/metabolismo , Interações Hospedeiro-Patógeno/imunologia , Imunidade Celular , Imunofenotipagem , Intestinos , Camundongos , Neutrófilos/imunologia , Neutrófilos/metabolismo
7.
mSphere ; 5(1)2020 01 08.
Artigo em Inglês | MEDLINE | ID: mdl-31915217

RESUMO

Dietary fiber provides a variety of microbiota-mediated benefits ranging from anti-inflammatory metabolites to pathogen colonization resistance. A healthy gut microbiota protects against Clostridioides difficile colonization. Manipulation of these microbes through diet may increase colonization resistance to improve clinical outcomes. The primary objective of this study was to identify how the dietary fiber xanthan gum affects the microbiota and C. difficile colonization. We added 5% xanthan gum to the diet of C57BL/6 mice and examined its effect on the microbiota through 16S rRNA gene amplicon sequencing and short-chain fatty acid analysis. Following either cefoperazone or an antibiotic cocktail administration, we challenged mice with C. difficile and measured colonization by monitoring the CFU. Xanthan gum administration is associated with increases in fiber-degrading taxa and short-chain fatty acid concentrations. However, by maintaining both the diversity and absolute abundance of the microbiota during antibiotic treatment, the protective effects of xanthan gum administration on the microbiota were more prominent than the enrichment of these fiber-degrading taxa. As a result, mice that were on the xanthan gum diet experienced limited to no C. difficile colonization. Xanthan gum administration alters mouse susceptibility to C. difficile colonization by maintaining the microbiota during antibiotic treatment. While antibiotic-xanthan gum interactions are not well understood, xanthan gum has previously been used to bind drugs and alter their pharmacokinetics. Thus, xanthan gum may alter the activity of the oral antibiotics used to make the microbiota susceptible. Future research should further characterize how this and other common dietary fibers interact with drugs.IMPORTANCE A healthy gut bacterial community benefits the host by breaking down dietary nutrients and protecting against pathogens. Clostridioides difficile capitalizes on the absence of this community to cause diarrhea and inflammation. Thus, a major clinical goal is to find ways to increase resistance to C. difficile colonization by either supplementing with bacteria that promote resistance or a diet to enrich for those already present in the gut. In this study, we describe an interaction between xanthan gum, a human dietary additive, and the microbiota resulting in an altered gut environment that is protective against C. difficile colonization.


Assuntos
Antibacterianos/uso terapêutico , Clostridioides difficile/efeitos dos fármacos , Infecções por Clostridium/prevenção & controle , Fibras na Dieta/administração & dosagem , Microbioma Gastrointestinal/efeitos dos fármacos , Polissacarídeos Bacterianos/administração & dosagem , Animais , Cefoperazona/uso terapêutico , Infecções por Clostridium/microbiologia , Suplementos Nutricionais , Suscetibilidade a Doenças , Fezes/microbiologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Organismos Livres de Patógenos Específicos
8.
mSphere ; 4(2)2019 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-30894434

RESUMO

Between October 2016 and June 2017, a C57BL/6J mouse colony that was undergoing a pre- and perinatal methyl donor supplementation diet intervention to study the impact of parental nutrition on offspring susceptibility to disease was found to suffer from an epizootic of unexpected deaths. Necropsy revealed the presence of severe colitis, and further investigation linked these outbreak deaths to a Clostridium difficile strain of ribotype 027 that we term 16N203. C. difficile infection (CDI) is associated with antibiotic use in humans. Current murine models of CDI rely on antibiotic pretreatment to establish clinical phenotypes. In this report, the C. difficile outbreak occurs in F1 mice linked to alterations in the parental diet. The diagnosis of CDI in the affected mice was confirmed by cecal/colonic histopathology, the presence of C. difficile bacteria in fecal/colonic culture, and detection of C. difficile toxins. F1 mice from parents fed the methyl supplementation diet also had significantly reduced survival (P < 0.0001) compared with F1 mice from parents fed the control diet. When we tested the 16N203 outbreak strain in an established mouse model of antibiotic-induced CDI, we confirmed that this strain is pathogenic. Our serendipitous observations from this spontaneous outbreak of C. difficile in association with a pre- and perinatal methyl donor diet suggest the important role that diet may play in host defense and CDI risk factors.IMPORTANCEClostridium difficile infection (CDI) has become the leading cause of infectious diarrhea in hospitals worldwide, owing its preeminence to the emergence of hyperendemic strains, such as ribotype 027 (RT027). A major CDI risk factor is antibiotic exposure, which alters gut microbiota, resulting in the loss of colonization resistance. Current murine models of CDI also depend on pretreatment of animals with antibiotics to establish disease. The outbreak that we report here is unique in that the CDI occurred in mice with no antibiotic exposure and is associated with a pre- and perinatal methyl supplementation donor diet intervention study. Our investigation subsequently reveals that the outbreak strain that we term 16N203 is an RT027 strain, and this isolated strain is also pathogenic in an established murine model of CDI (with antibiotics). Our report of this spontaneous outbreak offers additional insight into the importance of environmental factors, such as diet, and CDI susceptibility.


Assuntos
Infecções por Clostridium/etiologia , Dieta/efeitos adversos , Suplementos Nutricionais/efeitos adversos , Surtos de Doenças , Animais , Betaína/metabolismo , Colina/metabolismo , Clostridioides difficile/isolamento & purificação , Clostridioides difficile/patogenicidade , Suscetibilidade a Doenças/etiologia , Feminino , Masculino , Metionina/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Nutrição Parenteral/métodos , Ribotipagem , Fatores de Risco
9.
mSphere ; 4(1)2019 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-30700514

RESUMO

Clostridium (Clostridioides) difficile, a Gram-positive, anaerobic bacterium, is the leading single cause of nosocomial infections in the United States. A major risk factor for Clostridium difficile infection (CDI) is prior exposure to antibiotics, as they increase susceptibility to CDI by altering the membership of the microbial community enabling colonization. The importance of the gut microbiota in providing protection from CDI is underscored by the reported 80 to 90% success rate of fecal microbial transplants in treating recurrent infections. Adaptive immunity, specifically humoral immunity, is also sufficient to protect from both acute and recurrent CDI. However, the role of the adaptive immune system in mediating clearance of C. difficile has yet to be resolved. Using murine models of CDI, we found that adaptive immunity is dispensable for clearance of C. difficile However, random forest analysis using only two members of the resident bacterial community correctly identified animals that would go on to clear the infection with 66.7% accuracy. These findings indicate that the indigenous gut microbiota independent of adaptive immunity facilitates clearance of C. difficile from the murine gastrointestinal tract.IMPORTANCEClostridium difficile infection is a major cause of morbidity and mortality in hospitalized patients in the United States. Currently, the role of the adaptive immune response in modulating levels of C. difficile colonization is unresolved. This work suggests that the indigenous gut microbiota is a main factor that promotes clearance of C. difficile from the GI tract. Our results show that clearance of C. difficile can occur without contributions from the adaptive immune response. This study also has implications for the design of preclinical studies testing the efficacy of vaccines on clearance of bacterial pathogens, as inherent differences in the baseline community structure of animals may bias findings.


Assuntos
Imunidade Adaptativa , Clostridioides difficile/crescimento & desenvolvimento , Infecções por Clostridium/imunologia , Infecções por Clostridium/microbiologia , Microbioma Gastrointestinal , Interações Microbianas , Animais , Formação de Anticorpos , Modelos Animais de Doenças , Imunidade Celular , Camundongos
10.
Anaerobe ; 53: 74-81, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29859301

RESUMO

Recurrence of Clostridium difficile infection (CDI) places a major burden on the healthcare system. Previous studies have suggested that specific C. difficile strains, or ribotypes, are associated with severe disease and/or recurrence. However, in some patients a new strain is detected in subsequent infections, complicating longitudinal studies focused on strain differences that may contribute to disease outcome. We examined ribotype composition over time in patients who did or did not develop recurrence to examine infection with multiple C. difficile ribotypes (mixed infection), during the course of infection. Using a retrospective patient cohort, we isolated and ribotyped a median of 36 C. difficile colonies from 61 patients (105 total samples) at initial infection, recurrence (a second case of CDI within 15-56 days of initial infection), and reinfection (a second case of CDI after 56 days of initial infection). We observed mixed infection in 78.6% of samples at initial infection in patients who went on to develop recurrence compared to 18.1% of patients who did not, and mixed infection remained associated with subsequent recurrence after adjusting for gender and prior antibiotic exposure (OR 3.5, 95% CI 1.3-9.4, P = .015). In patients who were sampled longitudinally (44 consecutive events in 32 patients), the dominant ribotype changed in 31.8% of consecutive samples and the newly dominant ribotype was not detected in prior samples from that patient. Our results suggest that mixed C. difficile infection is more prevalent than previously demonstrated and potentially a marker of susceptibility to recurrence.


Assuntos
Clostridioides difficile/classificação , Clostridioides difficile/isolamento & purificação , Infecções por Clostridium/epidemiologia , Infecções por Clostridium/microbiologia , Coinfecção/epidemiologia , Coinfecção/microbiologia , Ribotipagem , Adulto , Idoso , Idoso de 80 Anos ou mais , Biodiversidade , Clostridioides difficile/genética , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Recidiva , Estudos Retrospectivos
11.
Artigo em Inglês | MEDLINE | ID: mdl-29155368

RESUMO

Cyclooxygenase-derived thromboxane (TxA2) and prostacyclin (PGI2) regulate atherogenesis in preclinical models. However, the relationship between TxA2 and PGI2 biosynthesis, vascular inflammation, and atherosclerotic cardiovascular disease (ASCVD) progression in humans remains unclear. The association between stable urine metabolites of thromboxane (TxA2-M) and prostacyclin (PGI2-M), circulating levels of cellular adhesion molecules (CAMs: E-selectin, P-selectin), chemokines and C-reactive protein, and the incidence of major adverse cardiovascular events (MACE) were evaluated in 120 patients with stable ASCVD on aspirin therapy. Urinary TxA2-M levels were significantly correlated with circulating P-selectin (r=0.319, p<0.001) and E-selectin (r=0.245, p=0.007) levels, and associated with higher risk of MACE (p=0.043). In contrast, PGI2-M levels were not significantly associated with CAM levels or MACE. These results provide insight into the contribution of TxA2 biosynthesis to ASCVD progression in humans, and suggest that patients with elevated TxA2-M levels may be predisposed to advanced platelet and endothelial activation and higher risk of adverse cardiovascular outcomes.


Assuntos
Aterosclerose/diagnóstico , Aterosclerose/urina , Tromboxano B2/análogos & derivados , Determinação de Ponto Final , Feminino , Humanos , Inflamação/diagnóstico , Inflamação/urina , Masculino , Pessoa de Meia-Idade , Prognóstico , Tromboxano B2/urina
12.
Artigo em Inglês | MEDLINE | ID: mdl-27401401

RESUMO

Non-alcoholic steatohepatitis (NASH) is an emerging public health problem without effective therapies. Cytochrome P450 (CYP) epoxygenases metabolize arachidonic acid into bioactive epoxyeicosatrienoic acids (EETs), which have potent anti-inflammatory and protective effects. However, the functional relevance of the CYP epoxyeicosanoid metabolism pathway in the pathogenesis of NASH remains poorly understood. Our studies demonstrate that both mice with methionine-choline deficient (MCD) diet-induced NASH and humans with biopsy-confirmed NASH exhibited significantly higher free EET concentrations compared to healthy controls. Targeted disruption of Ephx2 (the gene encoding for soluble epoxide hydrolase) in mice further increased EET levels and significantly attenuated MCD diet-induced hepatic steatosis, inflammation and injury, as well as high fat diet-induced adipose tissue inflammation, systemic glucose intolerance and hepatic steatosis. Collectively, these findings suggest that dysregulation of the CYP epoxyeicosanoid pathway is a key pathological consequence of NASH in vivo, and promoting the anti-inflammatory and protective effects of EETs warrants further investigation as a novel therapeutic strategy for NASH.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Hepatopatia Gordurosa não Alcoólica/enzimologia , Ácido 8,11,14-Eicosatrienoico/metabolismo , Adulto , Animais , Citocromo P-450 CYP2J2 , Dieta/efeitos adversos , Progressão da Doença , Epóxido Hidrolases/química , Epóxido Hidrolases/metabolismo , Feminino , Humanos , Hidrólise , Fígado/enzimologia , Masculino , Síndrome Metabólica/complicações , Camundongos , Camundongos Endogâmicos C57BL , Pessoa de Meia-Idade , Hepatopatia Gordurosa não Alcoólica/complicações , Hepatopatia Gordurosa não Alcoólica/metabolismo , Solubilidade
13.
J Lipid Res ; 57(1): 109-19, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26555503

RESUMO

Cytochrome P450 (CYP)-derived epoxyeicosatrienoic acids (EETs) exhibit potent cardiovascular protective effects in preclinical models, and promoting the effects of EETs has emerged as a potential therapeutic strategy for coronary artery disease (CAD). The relationship between circulating EET levels and CAD extent in humans, however, remains unknown. A panel of free (unesterified) plasma eicosanoid metabolites was quantified in 162 patients referred for coronary angiography, and associations with extent of CAD [no apparent CAD (N = 39), nonobstructive CAD (N = 51), and obstructive CAD (N = 72)] were evaluated. A significant relationship between free EET levels and CAD extent was observed (P = 0.003) such that the presence of obstructive CAD was associated with lower circulating EET levels. This relationship was confirmed in multiple regression analysis where CAD extent was inversely and significantly associated with EET levels (P = 0.013), and with a biomarker of EET biosynthesis (P < 0.001), independent of clinical and demographic factors. Furthermore, quantitative enrichment analysis revealed that these associations were the most pronounced compared with other eicosanoid metabolism pathways. Collectively, these findings suggest that the presence of obstructive CAD is associated with lower EET metabolite levels secondary to suppressed EET biosynthesis. Novel strategies that promote the effects of EETs may have therapeutic promise for patients with obstructive CAD.


Assuntos
Ácido Araquidônico/metabolismo , Ácidos Araquidônicos/metabolismo , Doença da Artéria Coronariana/metabolismo , Sistema Enzimático do Citocromo P-450/metabolismo , Ácido 8,11,14-Eicosatrienoico/sangue , Adulto , Idoso , Ácidos Araquidônicos/sangue , Biomarcadores/sangue , Angiografia Coronária , Doença da Artéria Coronariana/sangue , Sistema Enzimático do Citocromo P-450/sangue , Feminino , Humanos , Ácidos Hidroxieicosatetraenoicos/sangue , Inflamação/sangue , Inflamação/metabolismo , Masculino , Metabolômica , Pessoa de Meia-Idade
14.
Antioxid Redox Signal ; 23(18): 1389-409, 2015 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-26054376

RESUMO

AIMS: Increased oxidative stress and vascular inflammation are implicated in increased cardiovascular disease (CVD) incidence with age. We and others demonstrated that NOX1/2 NADPH oxidase inhibition, by genetic deletion of p47phox, in Apoe(-/-) mice decreases vascular reactive oxygen species (ROS) generation and atherosclerosis in young age. The present study examined whether NOX1/2 NADPH oxidases are also pivotal to aging-associated CVD. RESULTS: Both aged (16 months) Apoe(-/-) and Apoe(-/-)/p47phox(-/-) mice had increased atherosclerotic lesion area, aortic stiffness, and systolic dysfunction compared with young (4 months) cohorts. Cellular and mitochondrial ROS (mtROS) levels were significantly higher in aortic wall and vascular smooth muscle cells (VSMCs) from aged wild-type and p47phox(-/-) mice. VSMCs from aged mice had increased mitochondrial protein oxidation and dysfunction and increased vascular cell adhesion molecule 1 expression, which was abrogated with (2-(2,2,6,6-Tetramethylpiperidin-1-oxyl-4-ylamino)-2-oxoethyl)triphenylphosphonium chloride (MitoTEMPO) treatment. NOX4 expression was increased in the vasculature and mitochondria of aged mice and its suppression with shRNA in VSMCs from aged mice decreased mtROS levels and improved function. Increased mtROS levels were associated with enhanced mitochondrial NOX4 expression in aortic VSMCs from aged subjects, and NOX4 expression levels in arterial wall correlated with age and atherosclerotic severity. Aged Apoe(-/-) mice treated with MitoTEMPO and 2-(2-chlorophenyl)-4-methyl-5-(pyridin-2-ylmethyl)-1H-pyrazolo[4,3-c]pyridine-3,6(2H,5H)-dione had decreased vascular ROS levels and atherosclerosis and preserved vascular and cardiac function. INNOVATION AND CONCLUSION: These data suggest that NOX4, but not NOX1/2, and mitochondrial oxidative stress are mediators of CVD in aging under hyperlipidemic conditions. Regulating NOX4 activity/expression and using mitochondrial antioxidants are potential approaches to reducing aging-associated CVD.


Assuntos
Envelhecimento/genética , Doenças Cardiovasculares/enzimologia , Mitocôndrias/patologia , NADPH Oxidases/metabolismo , Envelhecimento/patologia , Animais , Apolipoproteínas E/deficiência , Doenças Cardiovasculares/etiologia , Células Cultivadas , Modelos Animais de Doenças , Humanos , Camundongos , Mitocôndrias/metabolismo , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , NADPH Oxidase 4 , NADPH Oxidases/deficiência , Estresse Oxidativo
15.
PLoS One ; 9(10): e110162, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25310404

RESUMO

Fatty liver disease is an emerging public health problem without effective therapies, and chronic hepatic inflammation is a key pathologic mediator in its progression. Cytochrome P450 (CYP) epoxygenases metabolize arachidonic acid to biologically active epoxyeicosatrienoic acids (EETs), which have potent anti-inflammatory effects. Although promoting the effects of EETs elicits anti-inflammatory and protective effects in the cardiovascular system, the contribution of CYP-derived EETs to the regulation of fatty liver disease-associated inflammation and injury is unknown. Using the atherogenic diet model of non-alcoholic fatty liver disease/non-alcoholic steatohepatitis (NAFLD/NASH), our studies demonstrated that induction of fatty liver disease significantly and preferentially suppresses hepatic CYP epoxygenase expression and activity, and both hepatic and circulating levels of EETs in mice. Furthermore, mice with targeted disruption of Ephx2 (the gene encoding soluble epoxide hydrolase) exhibited restored hepatic and circulating EET levels and a significantly attenuated induction of hepatic inflammation and injury. Collectively, these data suggest that suppression of hepatic CYP-mediated EET biosynthesis is an important pathological consequence of fatty liver disease-associated inflammation, and that the CYP epoxygenase pathway is a central regulator of the hepatic inflammatory response in NAFLD/NASH. Future studies investigating the utility of therapeutic strategies that promote the effects of CYP-derived EETs in NAFLD/NASH are warranted.


Assuntos
Sistema Enzimático do Citocromo P-450/metabolismo , Fígado Gorduroso/enzimologia , Fígado Gorduroso/patologia , Inflamação/patologia , Fígado/enzimologia , Fígado/patologia , Redes e Vias Metabólicas , Animais , Ácido Araquidônico/metabolismo , Aterosclerose , Biomarcadores/metabolismo , Citocromo P-450 CYP2J2 , Dieta , Eicosanoides/metabolismo , Epóxido Hidrolases/deficiência , Epóxido Hidrolases/metabolismo , Fígado Gorduroso/sangue , Fígado Gorduroso/genética , Regulação da Expressão Gênica , Hidrodinâmica , Inflamação/sangue , Inflamação/genética , Lipídeos/sangue , Masculino , Redes e Vias Metabólicas/genética , Camundongos Endogâmicos C57BL
16.
J Lipid Res ; 55(10): 2124-36, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25114171

RESUMO

Adipogenesis plays a critical role in the initiation and progression of obesity. Although cytochrome P450 (CYP)-derived epoxyeicosatrienoic acids (EETs) have emerged as a potential therapeutic target for cardiometabolic disease, the functional contribution of EETs to adipogenesis and the pathogenesis of obesity remain poorly understood. Our studies demonstrated that induction of adipogenesis in differentiated 3T3-L1 cells (in vitro) and obesity-associated adipose expansion in high-fat diet (HFD)-fed mice (in vivo) significantly dysregulate the CYP epoxygenase pathway and evoke a marked suppression of adipose-derived EET levels. Subsequent in vitro experiments demonstrated that exogenous EET analog administration elicits potent anti-adipogenic effects via inhibition of the early phase of adipogenesis. Furthermore, EET analog administration to mice significantly mitigated HFD-induced weight gain, adipose tissue expansion, pro-adipogenic gene expression, and glucose intolerance. Collectively, these findings suggest that suppression of EET bioavailability in adipose tissue is a key pathological consequence of obesity, and strategies that promote the protective effects of EETs in adipose tissue offer enormous therapeutic potential for obesity and its downstream pathological consequences.


Assuntos
Adipogenia/efeitos dos fármacos , Sistema Enzimático do Citocromo P-450 , Eicosanoides/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Intolerância à Glucose/tratamento farmacológico , Obesidade/tratamento farmacológico , Células 3T3-L1 , Adipogenia/genética , Animais , Gorduras na Dieta/administração & dosagem , Gorduras na Dieta/efeitos adversos , Intolerância à Glucose/induzido quimicamente , Intolerância à Glucose/genética , Intolerância à Glucose/metabolismo , Intolerância à Glucose/patologia , Camundongos , Camundongos Knockout , Obesidade/induzido quimicamente , Obesidade/genética , Obesidade/metabolismo , Obesidade/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...